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ABSTRACT

Title of dissertation: CONTROL OF LARGE ACTUATOR ARRAYS

USING PATTERN-FORMING SYSTEMS

Eric W. Justh, Doctor of Philosophy, 1998

Dissertation directed by: Professor P.S. Krishnaprasad
Department of Electrical Engineering

Pattern-forming systems are used to model many diverse phenomena

from biology, chemistry, and physics. These systems of differential equations

have the property that as a bifurcation (or control) parameter passes through

a critical value, a stable spatially uniform equilibrium state gives way to a sta-

ble pattern state, which may have spatial variation, time variation, or both.

There is a large body of experimental and mathematical work on pattern-

forming systems. However, these ideas have not yet been adequately exploited

in engineering, particularly in the control of smart systems; i.e., feedback sys-

tems having large numbers of actuators and sensors. With dramatic recent

improvements in micro-actuator and micro-sensor technology, there is a need

for control schemes better than the conventional approach of reading out all

of the sensor information to a computer, performing all the necessary com-

putations in a centralized fashion, and then sending out commands to each

individual actuator. Potential applications for large arrays of micro-actuators



include adaptive optics (in particular, micromirror arrays), suppressing turbu-

lence and vortices in fluid boundary-layers, micro-positioning small parts, and

manipulating small quantities of chemical reactants.

The main theoretical result presented is a Lyapunov functional for the cu-

bic nonlinearity activator-inhibitor model pattern-forming system. Analogous

Lyapunov functionals then follow for certain generalizations of the basic cubic

nonlinearity model. One such generalization is a complex activator-inhibitor

equation which, under suitable hypotheses, models the amplitude and phase

evolution in the continuum limit of a network of coupled van der Pol oscil-

lators, coupled to a network of resonant circuits, with an external oscillating

input. Potential applications for such coupled van der Pol oscillator networks

include quasi-optical power combining and phased-array antennas.

In addition to the Lyapunov functional, a Lyapunov function for the

truncated modal dynamics is derived, and the Lyapunov functional is also

used to analyze the stability of certain equilibria. Basic existence, uniqueness,

regularity, and dissipativity properties of solutions are also verified, engineering

realizations of the dynamics are discussed, and finally, some of the potential

applications are explored.
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Chapter 1

Introduction

1.1 Background

Pattern-forming systems are used to model many diverse phenomena

from biology, chemistry, and physics. Biological examples include models for

describing population dynamics, animal coloration patterns, various aspects of

nervous systems, human visual hallucination patterns, and cardiac fibrillation

[1, 2]. Examples from chemistry include certain catalyzed reactions, including

the catalytic converters used to convert carbon monoxide to carbon dioxide

in motor vehicles [1, 3, 4, 5]. Physics examples include patterns observed in

shaken collections of small spherical particles, gas discharge tubes, semicon-

ductor electron-hole plasmas, and Josephson-junction arrays [6, 7, 8, 9, 10, 11].

Despite the diversity of underlying phenomena, all such pattern-forming sys-

tems share certain basic mathematical features, which is reflected in the simi-

larities among the observed patterns.

The philosophy underlying the study of pattern formation is that while

each of the various physical systems has its own unique characteristics, certain

basic features of the pattern-forming behavior are universal; i.e., independent

of the details of the model. However, given some physical model that is known

to exhibit patterns, it is not generally clear how to extract the part respon-

sible for the pattern-forming behavior. Therefore, the standard approach to

studying patterns is to write down simplified model equations, which do not

necessarily have a specific physical origin, but which can be shown analytically

to give rise to the patterns under study. The cubic nonlinearity activator-
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inhibitor model equation, which is the main equation analyzed in this work,

is an example of a pattern-forming system model equation. Because of its

relatively simple form, a number of strong results can be derived for it [12].

There is a large body of experimental and mathematical work on pattern-

forming systems that arise in biology, chemistry, and physics. However, these

ideas have not yet been adequately exploited in engineering, particularly in

the control of smart systems; i.e., feedback systems having large numbers of

actuators and sensors. With dramatic recent improvements in micro-actuator

and micro-sensor technology, there is a need for control schemes better than

the conventional approach of reading out all of the sensor information to a

computer, performing all the necessary computations in a centralized fashion,

and then sending out commands to each individual actuator.

Potential applications for large arrays of micro-actuators include adap-

tive optics (in particular, micromirror arrays), suppressing turbulence and vor-

tices in fluid boundary-layers, micro-positioning small parts, and manipulating

small quantities of chemical reactants [13, 14, 15, 16, 17, 18, 19, 20]. As the

number of actuators increases, so does the bandwidth required to command

each actuator individually. The goals of using pattern-forming systems for

control of large actuator arrays are to

• enable the external control inputs to be lower-bandwidth, either by hav-

ing the same control input influence many actuators, or by having the

control input set quasistatic parameters which determine how the (much

faster) pattern-forming system dynamics evolve;

• allow the actuator control signals to be computed in parallel at each

actuator site using mostly local information; and
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• permit large arrays to be treated mathematically using nonlinear dynam-

ical systems theory so that control schemes can be developed.

Biology provides the best examples of how information from large num-

bers of sensors can be incorporated effectively into the control of large numbers

of actuators. Experimental and theoretical biologists have made and continue

to make considerable progress in explaining how various aspects of animal ner-

vous systems function. However, there is still not enough known to suggest

rules for the design of a smart system. The pattern-forming system level seems

to be the correct level of analysis for certain aspects of biological nervous sys-

tems (most dramatically, human visual hallucination patterns) [1, 2]. So trying

to base the control of a smart system on pattern-forming system ideas is at

least biologically reasonable.

The model equation we focus on is the cubic nonlinearity activator-

inhibitor system

τθ∂tθ = l2∆θ − θ3 + θ + η,

τη∂tη = L2∆η − η − θ + C
(1.1)

in either one or two space dimensions, where ∆ denotes the Laplacian, and

θ = activator,

η = inhibitor,

τθ = time constant for the activator,

τη = time constant for the inhibitor,

l = diffusion length for the activator,

L = diffusion length for the inhibitor,

C = control (or bifurcation) parameter.
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Figure 1.1: Intersection of the curves η(θ) = θ3 − θ and η(θ) = −θ + C

We also define

α = τθ/τη = ratio of time constants,

β = l/L = ratio of length scales.
(1.2)

The system has a spatially uniform equilibrium solution given by the intersec-

tion of the curve η(θ) = θ3− θ with the line η(θ) = −θ+C, as shown in figure

1.1.

We are primarily interested in β << 1, in which case the spatially uniform

equilibrium solution is stable for |C| > 1
3
√

3
. When the spatially uniform

equilibrium solution is unstable, a pattern solution is stable. When α << 1,

there is an ideal pattern solution which is periodic in both space and time.

However, for the case we are primarily interested in, α > 1, the pattern solution

is in fact a spatially periodic equilibrium. Furthermore, when β << 1 and

α > 1, when the spatially uniform equilibrium is stable, other interesting

equilibria may also be stable. These interesting equilibria, and a spatially

periodic pattern equilibrium, are illustrated in figures 1.2, 1.3, and 1.4. (In

figures 1.1, 1.2, and 1.3, C = −2
√

2
3
√

3
; in figure 1.4, C = 0.)
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Figure 1.2: Narrow spike equilibrium solution for the cubic nonlinearity model
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Figure 1.3: Wide pulse equilibrium solution for the cubic nonlinearity model
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Figure 1.4: Equilibrium pattern solution for the cubic nonlinearity model

A pattern of spikes in one dimension corresponds to more interesting

equilibria for a two-dimensional system. Two (approximately) radially sym-

metric equilibria in two dimensions are pictured in figures 1.5 and 1.6. Since

the boundary conditions are periodic, the radial symmetry of the pattern so-

lution breaks down toward the edges of the domain. The two-dimensional

system also has an ideal pattern consisting of parallel rolls.

Actual patterns observed in pattern-forming systems generally differ from

the ideal patterns, unless at least one of several special conditions is met:

• the system is highly homogeneous and is uniformly maintained very close

to the bifurcation point where stability of the spatially uniform equilib-

rium has just given way to stability of the pattern solution;

• the system is excited into the pattern state in a carefully controlled way

so that the ideal pattern is obtained; or

• there is long-range coupling present so that an ideal pattern is energeti-

cally favorable as compared with a more disordered pattern.
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Figure 1.5: An equilibrium pattern solution for the two-dimensional cubic
nonlinearity model

 β = 0.1

 x

 θ

 y

Figure 1.6: Narrow spike solution for the two-dimensional cubic nonlinearity
model
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Figure 1.7: An actual pattern for the two-dimensional cubic nonlinearity model

Unless one of these special conditions is met, the actual pattern observed looks

locally like the ideal pattern, but exhibits disorder over long ranges, as illus-

trated in figure 1.7. Similarly, when β << 1, α > 1, and the spatially uniform

equilibrium state of the cubic nonlinearity model is stable, the spike solutions

essentially do not interact with each other as long as they are separated by

several inhibitor diffusion lengths, unless the system is highly homogeneous.

If the system is highly homogeneous, the effect spikes have on each other de-

creases exponentially with the distance between them [21]. (In figures 1.5 and

1.7, C = 0; in figure 1.6, C = −2
√

2
3
√

3
.)

The factors that influence actual patterns are initial conditions, bound-

ary conditions, inhomogeneities, and symmetry-breaking. Initial conditions,

boundary conditions, and inhomogeneities might be used for pattern control.

(During symmetry breaking, tiny perturbations beyond our control select the

position and orientation of the pattern.) Although ideal patterns have been the

focus of much of the theoretical and experimental work with pattern-forming
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systems, the fact that actual patterns have the flexibility to deviate from ideal

patterns means that a rich variety of patterns can be realized, at the expense,

of course, of having to devise control schemes.

For the cubic nonlinearity model with β << 1 and α > 1, both the

pattern regime and the spike regime might be useful, depending on the par-

ticular application. Two surfaces with micro-actuator arrays in contact with

each other could change the coefficient of friction between them by alternat-

ing between the spatially uniform equilibrium state (low friction), and a state

of disordered interlocking rolls (high friction), under the control of parameter

common to all of the actuators. Alternatively, interlocking patterns of paral-

lel rolls would produce a high coefficient of friction normal to the rolls, and

low friction in the direction parallel to the rolls. In the friction example, the

pattern regime would be the regime of interest. Alternatively, if one wanted

an analog memory, so that a sensor input would excite a spike at a particular

point that could persist until a single control input to all the actuators were

changed to eliminate all the spikes, that would be an application where the

spike regime would be of interest.

For β << 1 and α > 1, the stable solutions for the cubic nonlinearity

model are equilibria. When α << 1, time-periodic patterns and traveling

spikes are also possible. However, the pattern-selection problem (or the prob-

lem of selecting stationary versus traveling spikes and prescribing the direction

the traveling spikes travel) is quite difficult. There are, however, alternative

approaches to taking α << 1 in the cubic nonlinearity model in order to obtain

interesting time-varying patterns of activity in an array of actuators, namely

• the active transmission-line model,
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• the complex activator-inhibitor equation (which, under appropriate hy-

potheses, models a type of coupled oscillator network), or

• the cubic nonlinearity model with an additional advective term.

One type of active transmission line acts like a linear transmission line for

the particular pulse shapes that it supports, and pulses applied to the active

transmission line decay to one of those pulse shapes (or else decay to a stable

spatially uniform equilibrium). If two pulses traveling in opposite directions

encounter each other, they both are attenuated as they pass through each

other, but then each one grows back toward a pulse shape supported by the

active transmission line. Furthermore, certain pulse shapes supported by the

active transmission line are readily characterized.

The complex activator-inhibitor equation represents the phase envelope

of the coupled oscillator network it models, so equilibria of the complex activator-

inhibitor equation can actually represent rotating waves in the underlying cou-

pled oscillator network. Therefore, traveling waves can be achieved in the

physical system, while the control and modeling still involves equilibria.

An additional advective term in the basic cubic nonlinearity model dy-

namics can be used to move around individual spikes or whole patterns. One

possibility would be to have a digital memory at each actuator site that could

store a velocity vector. The velocity vectors could be updated slowly, so that

they would act as quasistatic parameters governing the (much faster) mo-

tion of spikes. In this way, a rapidly changing (but somewhat stereotypical)

pattern of activity could be achieved in an array of actuators with only low-

bandwidth access to the individual actuator memories. This is in contrast

to the approach used in the Texas Instruments digital micromirror chip for
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high-definition television applications, a state-of-the-art example of a micro-

actuator array [22, 23].

In the Texas Instruments micromirror chip, each mirror in a 1000 by

1000 array is not only individually updated for each high-definition television

frame, but is also pulse-width-modulated at an even faster rate to provide the

gray-scale (and an additional three times faster to provide all three colors using

the same mirrors). It is not difficult to calculate that

106 mirrors× 24 frames/second × 3 colors× 8 bits of grayscale resolution

= 576 megabits/second,

which can be accomodated with a dozen 50MHz input pins. This calculation

shows how the number of actuators and mechanical bandwidth required for

each actuator translate into a system bandwidth requirement. The entire 1000

by 1000 array of micromirrors fits into a square inch, so requiring a computer

to provide 576 megabits per second for each square inch of active area would

be the primary limitation to the Texas Instruments micromirror chip control

approach if the active area were to be many square inches. (Of course, the

HDTV application requires that each actuator be independently controlled, so

in that case, there is no choice but to provide enough high-bandwidth input

signals to do the job.)

It should be emphasized that although there has been a huge amount

of work (theoretical and experimental) on pattern-forming systems, there has

been little done by way of applying those ideas in an engineering context.

As the Texas Instruments micromirror chip example shows, the number of

actuators needs to be rather large before alternatives to the direct computer-

controlled approach are worth considering. But now, with the coming-of-age

of MEMS technology, it is possible to start envisioning engineering systems
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with so many actuators and sensors that alternatives to the direct computer-

controlled approach are worth considering.

1.2 Overview

First, some of the standard analysis techniques for pattern-forming sys-

tems are reviewed, including envelope equations and analysis of equilibria. Sec-

ond, engineering realizations of the cubic nonlinearity model, and the related

active transmission line and complex activator-inhibitor systems are discussed.

Third, basic existence and uniqueness results are proved for solutions of these

systems of PDEs, and some dissipativity results are also proved. Fourth, a

Lyapunov functional for the cubic nonlinearity model is derived, and then gen-

eralized to several related systems, including the complex activator-inhibitor

equation and a version of the active transmission line. Fifth, some smart-

system applications are discussed, and finally, conclusions and future research

directions are indicated.
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Chapter 2

Standard Approaches for Analyzing Pattern-

Forming Systems

2.1 Introduction

Pattern-forming systems that arise in nature are, of course, governed by

the fundamental equations underlying the media in which the patterns appear.

These fundamental governing equations, which are also sometimes called “mi-

croscopic equations,” tend to be complicated to analyze. (The same equations

referred to as microscopic equations in the pattern-forming-system context

may also be considered macroscopic equations in a continuum-mechanics con-

text, but we adopt the pattern-forming system terminology.) For example,

the Navier-Stokes equations for fluid systems, reaction-diffusion equations for

chemical systems, and equations of mechanics for shaken-particle systems, are

all examples of microscopic equations. Even when the microscopic equations

for a process giving rise to patterns can be confidently written down, directly

analyzing the pattern-forming properties of the microscopic equations is gen-

erally difficult or impossible. Particularly in fluid systems, much analysis of

patterns has been carried out even though it is quite difficult [1, 24, 25, 26].

But often in physical systems, the microscopic equations are not even known

with certainty, and the goal of the pattern analysis may be to discern properties

of systems from the patterns, rather than the other way around.

There are two main standard approaches for dealing with the difficulties

encountered in analyzing pattern-forming systems. The first approach is to

distill from microscopic equations the essential part which gives rise to the
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pattern-forming properties. The second approach is to derive envelope equa-

tions, which are intimately connected to the patterns, but also have some pa-

rameters depending on the microscopic equations (or on the underlying system)

[1, 27]. The two approaches are interrelated, because microscopic equations

can be informally classified by the envelope equations they give rise to.

While envelope equations are useful for understanding pattern-forming

systems, from an engineering standpoint, we generally want stronger results

than envelope equations alone can provide. But demanding stronger results

necessitates narrowing the microscopic equations we consider. We therefore

focus on “model equations,” the simplest microscopic equations that give rise

to the pattern-forming properties of interest. While the model equations are

not the fundamental governing equations of any systems arising in nature, we

hope that they capture the pattern properties of many physical systems.

After discussing envelope equations, we review the standard linear anal-

ysis of general activator-inhibitor equations and describe the type of activator-

inhibitor equation for which the cubic nonlinearity model is a suitable model

equation. The standard approach to analyzing spike solutions is also briefly

discussed.

2.2 Amplitude equations

In narrowband wireless communications, a sinusoidal carrier signal is

modulated by the voice or data signal to be transmitted. The resulting trans-

mitted signal has high-frequency sinusoidal variation due to the carrier, but it

is the slowly-varying envelope that contains the information of interest. For

amplitude modulation, the amplitude envelope contains the transmitted infor-

mation, and for frequency modulation or phase modulation, the phase envelope
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contains the transmitted information. The same concepts can be applied to

pattern-forming systems. The ideal pattern (analogous to the sinusoidal com-

munications carrier signal) may have time periodicity, spatial periodicity, or

both. Envelope equations (either amplitude equations or phase equations)

capture the slow variations in the pattern, which may be slow time variations,

long-length-scale spatial variations, or both. The envelope equations for a par-

ticular pattern-forming system can be derived from the microscopic equations

and from knowledge of whether the ideal patterns are time-periodic, spatially

periodic, or both. However, different microscopic equations with similar ideal

patterns can give rise to similar envelope equations, so envelope equations can

be associated with patterns rather than with specific microscopic equations

(provided the microscopic equations satisfy certain assumptions). The proper-

ties of the specific microscopic equations are then captured in parameters that

appear in the envelope equations.

Envelope equations are used to study how patterns evolve analytically

when the microscopic equations are too difficult to analyze directly (e.g., where

secondary instability boundaries lie). Envelope equations are also used for nu-

merical investigations of pattern-forming system behavior, to study pattern

behavior that is difficult to extract analytically even from the envelope equa-

tions. However, envelope equations have a limited domain of validity (generally

the pattern-forming system has to be close to the bifurcation threshold), and

therefore, there is a limit to how much information envelope equations can pro-

vide. Nevertheless, envelope equations do help us categorize pattern-forming

systems, illustrate the important feature of “phase diffusion” (discussed in

section 2.3), and provide insight into how patterns are established in pattern-

forming systems as the bifurcation parameter passes through threshold (during

which time it is briefly in the near-threshold regime of validity of the envelope
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equations).

Amplitude equations are the simplest type of envelope equations. Their

form is determined by the type of pattern under consideration, and the only

other features of the original microscopic equations retained in the amplitude

equations are the values of several constants. Amplitude equations only apply

near the bifurcation threshold, and they also only apply to spatially localized

regions (although there is also an equivariant form of the amplitude equations

which can be used over the entire domain [30]).

The first step in deriving amplitude equations is to define the normalized

control parameter ε so that the bifurcation to the pattern solution occurs at

ε = 0. If C is the control parameter in the microscopic equations, and C0 is the

critical value at which the bifurcation occurs, then we can take ε = (C−C0)/C0.

The second step is to assume a form for the growth rate of linear distur-

bances for ε near zero. We will make the standard assumption that the linear

disturbance growth rate is quadratic in wave number. The two most commonly

assumed forms of linear growth rate versus wave number and ε are illustrated

in figure 2.1. We define K-systems as systems having a steady, supercritical

pitchfork bifurcation at threshold, and we define Ω-systems as having a Hopf

bifurcation at threshold [24, 28]. For K-systems, then, the instability occurs

first for a nonzero wave number k0, and for Ω-systems, the instability occurs

first for a spatially uniform perturbation with temporal frequency ω0. In fig-

ure 2.1, Re{σ} represents the exponential growth rate of a spatially sinusoidal

perturbation.

For K-systems, a real eigenvalue of the linearization passes from the

left half-plane to the right half-plane at threshold. For Ω-systems, a pair of
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Figure 2.1: Growth rate of a linear disturbance as a function of wave number
and ε

complex-conjugate eigenvalues of the linearization pass from the left half-plane

to the right half-plane at threshold. If a system has the property that both a

real eigenvalue and a pair of complex-conjugate eigenvalues of the linearization

pass from the left half-plane to the right half-plane at threshold, we call such

a system a KΩ-system, since such a system would have both a nonzero wave

number k0 and a nonzero temporal frequency ω0 at threshold. However, we

do not define KΩ-systems this way, because if a real eigenvalue and pair of

complex-conjugate eigenvalues of the linearization cross the imaginary axis at

approximately (but not exactly) the same value of the control parameter, we

still consider the system to be a KΩ-system [8, 9, 29]. Therefore, we defer the

definition of KΩ-systems until section 2.4. Since envelope equation analysis

requires the system to be close to threshold, in the envelope equation context,

the real eigenvalue and pair of complex-conjugate eigenvalues of a KΩ-system

would be thought of as crossing into the right half-plane for essentially the same

value of control parameter. Therefore, KΩ-systems have a linear instability

growth rate plot identical to that for K-systems: figure 2.1 only depicts the
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spatial instability.

2.2.1 Amplitude equation for K-systems

SinceK-systems have spatially periodic equilibrium patterns, for deriving

the amplitude equation we assume that at threshold (i.e., for ε = 0), the

unstable perturbation has the form

u(x, t) = U0eik0·x+σt, (2.1)

where k0 is the wave vector of the pattern at threshold, and σ is purely real.

Next, we suppose that our unstable perturbation saturates in amplitude (in-

stead of growing exponentially forever), but the amplitude is a (slowly varying)

function of time and position:

u(x, t) = [U0A(x, y, t)eik0x + c.c.] +O(ε), (2.2)

where “c.c.” denotes the complex conjugate, and we also restrict our attention

to the case of two space dimensions with k0 aligned along the x-direction. (The

scalar k = |k| is the wave number associated with wave vector k.)

It is possible to derive the amplitude equation directly from the PDE

for u(x, t), but the form of the amplitude equation can actually be deduced

more simply [1, 27]. From figure 2.1, the linear disturbance growth rate as a

function of wave number has the form

σ(k) = τ−1
0 [ε− ξ2

0(k − k0)2], (2.3)

where τ0 and ξ0 can be thought of as scaling factors for time and space, re-

spectively. Writing k = k0x̂ +κ, where x̂ is the unit vector in the x-direction,

we can expand |k0x̂ + κ| − k0 for small |κ| as follows:

|k0x̂ + κ| − k0 =
√

(k0 + κx)2 + κ2
y − k0
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=
(
k0 + κx +

1

2

1

k0 + κx
κ2
y + · · ·

)
− k0

≈ κx +
κ2
y

2k0
, (2.4)

so that

σ(k) ≈ τ−1
0

ε− ξ2
0

(
κx +

κ2
y

2k0

)2
 . (2.5)

Performing the standard substitutions σ → ∂t, κx → −i∂x, and κy → −i∂y,

and adding the cubic saturation term −g0|A|2A, yields the amplitude equation

τ0∂tA = εA+ ξ2
0

[
∂x −

(
i

2k0

)
∂yy

]2

A− g0|A|
2A, (2.6)

where τ0, ξ0, and g0 set the scales of variation in time, space, and amplitude.

The cubic saturation term is the lowest-order nonlinearity that can saturate the

linear amplitude growth while also preserving the invariance of the amplitude

equation with respect to global phase shifts A→ Aeiφ.

The amplitude equation describes the variations in the pattern on the

slow time scale εt and on the long spatial scales ε1/2x and ε1/4y. The amplitude

equation can be rescaled and put in the form

∂T Ã = Ã+ (∂X − (1/2)i∂Y Y )2Ã− |Ã|2Ã, (2.7)

when ε > 0.

The amplitude equation (2.6) possesses the Lyapunov functional

V =
∫ ∫ [

−ε|A|2 +
(
g0

2

)
|A|4 +

∣∣∣∣ξ0

(
∂x −

(
i

2k0

)
∂yy

)
A

∣∣∣∣2
]
dxdy, (2.8)

so that

∂tV =
δV

δĀ
· (∂tA) = −2τ0

∫ ∫
|∂tA|

2dxdy. (2.9)

This Lyapunov functional is radially unbounded, and the dynamics are gradi-

ent dynamics, so the behavior of the amplitude equation is relaxation toward

equilibria.
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The attractive features of the amplitude equation (2.6) are that it takes

the same relatively simple form for all microscopic equations that give rise

(only) to spatially periodic equilibrium patterns beyond the bifurcation thresh-

old in two spatial dimensions (and that satisfy the assumption about the linear

disturbance growth rate as a function of wave number). Because of the Lya-

punov functional and gradient dynamics for this amplitude equation, we know

that the system relaxes toward equilibria. Furthermore, we are able to elim-

inate all of the constants from the equation simply by rescaling the variables

appropriately.

The most serious limitation of the amplitude equation (2.6) is that it is

not equivariant with respect to rotations. Suppose the microscopic equations

are invariant under rotations. Then two patterns that are related to each

other through a rotation evolve identically. However, the amplitude equation

(2.6) produces completely different solutions for initial patterns that are the

same except for a rotation. Equivariant amplitude equations were derived by

Gunaratne et. al. [30]. The equivariant amplitude equation approach also

leads to an equivariant measure of the disorder in a pattern [31].

Another limitation of amplitude equations is that they are only valid for

ε close to zero; i.e., when the system is near threshold. Phase equations can

give better information when the system is further from threshold, but at the

cost of a much more complicated derivation.

2.2.2 Amplitude equation for Ω-systems

Since Ω-systems have spatially uniform but time-periodic patterns, we

assume that near threshold the solution in two space dimensions has the form

U(x, t) = [U0A(x, y, t)e−iωεt + c.c.] +O(ε), (2.10)
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where A(x, y, t) is the complex amplitude. For ε = 0, the oscillation frequency

is ω0 6= 0, and for ε > 0, the oscillation frequency ωε is given by

ωε = ω0 − c0ε, (2.11)

an affine relationship between reduced control parameter and frequency.

The amplitude equation is

∂tA = εA+ (1 + ic1)∆A− (1− ic3)|A|2A, (2.12)

and its form is justified as follows [1]. First, there is a linear growth term εA,

just as in the K-system case. Second, there is a diffusive term ∆A, which leads

to a spatially uniform steady-state solution. Third, there is a nonlinearity

to saturate the amplitude, |A|2A. The main difference from the K-system

amplitude equation is that the coefficients of the ∆A and |A|2A terms are now

complex instead of real, and these complex coefficients admit the possibility

of traveling-wave solutions.

Before considering traveling-wave solutions, consider a spatially uniform

solution:

A(x, t) = a0e−iΩ0t. (2.13)

Plugging this solution into the amplitude equation (2.12), we find

−iΩ0a0e−iΩ0t = εa0e−iΩ0t − (1− ic3)a3
0e−iΩ0t

−iΩ0 = ε− (1− ic3)a2
0, (2.14)

so that a2
0 = ε and Ω0 = −c3ε.

Now consider a traveling wave solution:

Aκ(x, t) = aκe
i(κ·x−Ωκt). (2.15)
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Plugging this solution into the amplitude equation (2.12), we find

−iΩκ = ε− (1 + ic1)κ2 − (1− ic3)a2
κ, (2.16)

so that a2
κ = ε− κ2 and

Ωκ = c1κ
2 − c3a

2
κ = c1κ

2 − c3(ε− κ2)

= −c3ε+ (c1 + c3)κ2. (2.17)

These solutions are also known as rotating waves.

We are not considering Ω-systems as top candidates for control of large

actuator arrays. However, it is important to understand the distinction be-

tween K-systems and KΩ-systems, and the amplitude equation for Ω-systems

is the first step in understanding the amplitude equation for KΩ-systems.

2.2.3 Amplitude equation for KΩ-systems

Recall that for K-systems there was a wave number k0 6= 0 at threshold,

and for Ω-systems there was an oscillation frequency ω0 6= 0 at threshold. For

KΩ-systems there are both a nonzero wave number k0 and a nonzero oscillation

frequency ω0, and the solution in two spatial dimensions is described by

U(x, t) = U0[AR(x, y, t)ei(k0x−ωεt) +AL(x, y, t)e−i(k0x+ωεt) + c.c.] +O(ε), (2.18)

where AR(x, y, t) andAL(x, y, t) are the complex right-traveling and left-traveling

waves for which we are deriving the amplitude equation.

The amplitude equation for KΩ-systems can be deduced in a fashion

similar to the derivation for K-systems. We start with the equation for the

exponential growth term of the instability, equation (2.3), and set k = k0x̂+

κ . However, for KΩ-systems, the exponential instability term also has an
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imaginary part, σ(k)± iω(k), with the dispersion relation ω(k) given by

ω(k) = ωε + (k − k0)s0, (2.19)

where s0 is the “linear group speed,” ∂ω/∂k|k=k0. The expansion of (k−k0) in

terms of κx and κy is slightly more involved than in the K-system case, because

(k − k0) appears linearly in the expression for ω(k) as well as quadratically in

the expression for σ(k):

k − k0 =
√

(k0 + κx)2 + κ2
y − k0

=
(

[(k0 + κx)
2]1/2 +

1

2
[(k0 + κx)

2]−1/2κ2
y −

1

2!

1

2

1

2
[(k0 + κx)

2]−3/2κ4
y

+ · · ·
)
− k0

= κx +
1

2(k0 + κx)
κ2
y −

1

8(k0 + κx)3
κ4
y + · · ·

≈ κx +
1

2k0

(
1−

κx
k0

)
κ2
y −

1

8k3
0

κ4
y

= κx +
1

2k0

κ2
y −

1

2k2
0

κxκ
2
y −

1

8k3
0

κ4
y, (2.20)

where we have retained the lowest-order term in κx, the two lowest-order terms

in κy, and the lowest-order cross term involving κx and κy. As in the K-system

case, for (k − k0)2 in the σ(k) term, we can use

(k − k0)2 ≈
(
κx +

1

2k0
κ2
y

)2

. (2.21)

Then using ω → i∂t, κx → −i∂x, and κy → −i∂y to determine the linear PDE

resulting in the exponential growth represented by σ(k)± iω(k), we obtain

k − k0 → −i

(
∂x −

i

2k0
∂yy +

1

2k2
0

∂x∂yy −
i

8k3
0

∂4
y

)
, (2.22)

(k − k0)2 → −
(
∂x −

i

2k0
∂yy

)2

. (2.23)

We could now use these expressions to write down the linear part of the am-

plitude equation, but to keep the amplitude equation from becoming too clut-

tered, for now consider the one-dimensional case so that
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k − k0 → −i∂x,

(k − k0)2 → −∂xx.
(2.24)

Then σ(k), the exponential growth term of the instability, contributes the

terms

∂tAR = εAR + ∂xxAR,

∂tAL = εAL + ∂xxAL

(2.25)

to the amplitude equation. Since σ(k) − iω(k) is associated with AR, and

σ(k) + iω(k) is associated with AL, ω(k) contributes the terms

∂tAR = −s0∂xAR,

∂tAL = s0∂xAL

(2.26)

to the amplitude equation (where we have eliminated the constants τ0 and ξ0

by rescaling). The linear terms of the one-dimensional amplitude equation are

then

∂tAR + s0∂xAR = εAR + ∂xxAR,

∂tAL − s0∂xAL = εAL + ∂xxAL.
(2.27)

As in the K-system case, cubic terms are added to saturate the nonlinearity,

and as in the Ω-system case, complex coefficients are introduced, yielding

∂tAR + s0∂xAR = εAR + (1 + ic1)∂xxAR − (1− ic3)|AR|
2AR,

∂tAL − s0∂xAL = εAL + (1 + ic1)∂xxAL − (1− ic3)|AL|
2AL.

(2.28)

So far we have not introduced any interaction between the left- and right-

traveling waves. The form of the coupling between AR and AL should satisfy

the following conditions:

(1). For small AR and AL, the coupling should be insignificant compared to

the linear terms in the amplitude equation.
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(2). The coupling should only affect the magnitude, and not the phase, of AR

and AL.

(3). The coupling should determine whether traveling waves or standing waves

are the stable solutions.

The simplest coupling between AR and AL that meets these criteria leads to

the following final form for the one-dimensional amplitude equation for KΩ-

systems [1]:

∂tAR + s0∂xAR = εAR + (1 + ic1)∂xxAR − (1− ic3)|AR|
2AR

−g1(1− ic2)|AL|
2AR,

∂tAL − s0∂xAL = εAL + (1 + ic1)∂xxAL − (1− ic3)|AL|
2AL

−g1(1− ic2)|AR|
2AL.

(2.29)

The amplitude equation in two space dimensions takes the form [1]:

∂tAR + s0[∂x − (i/2k0)∂yy + (1/2k2
0)∂x∂yy − (i/8k3

0)∂4
y ]AR

= εAR + (1 + ic1)[∂x − (i/2k0)∂yy]
2AR − (1− ic3)|AR|

2AR

−g1(1− ic2)|AL|
2AR,

∂tAL − s0[∂x − (i/2k0)∂yy + (1/2k2
0)∂x∂yy − (i/8k3

0)∂4
y ]AL

= εAL + (1 + ic1)[∂x − (i/2k0)∂yy]
2AL − (1− ic3)|AL|

2AL

−g1(1− ic2)|AR|
2AL.

(2.30)

Unlike the K-system case, the amplitude equation for the KΩ-system cannot

be rescaled to remove the epsilon because it is not clear how to choose appro-

priate time, length, and amplitude scales to balance the various terms. This

also means that solutions to the amplitude equation may not be slowly varying

in space and time, as required for the amplitude equation approach to be valid

[1].
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Amplitude-equation-type ideas are also used in more complicated pattern

analysis contexts, for example in the study of “blinking” states that arise from

the combination of odd and even parity standing waves, and in the study of

coupling between instability modes belonging to different instability “balloons”

[32, 33].

2.3 Phase equations

Just as amplitude equations could only describe the pattern dynamics

accurately over long time and long distance scales, the same limitation also

applies to phase equations. In both cases, the long distance scales signify large

numbers of basic (spatial) periods of the pattern over which the solution is per-

mitted to change significantly, in keeping with the envelope equation concept.

The phase equation has the advantages of capturing certain features which the

amplitude equation does not and of being valid well beyond threshold, but at

the price of a much more complicated derivation.

In contrast to the amplitude equation, which could be written down

just from the properties of the instability without regard to the microscopic

equations, the derivation of the phase equation requires microscopic equations

(or model equations having similar pattern-forming properties) as a starting

point.

Because phase equation derivations are lengthy, we will only examine the

K-system case.

2.3.1 Linearized phase equation derivation from the amplitude equa-

tion

Although we cannot hope to derive the phase equation itself from the am-
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plitude equation (because the phase equation contains more information than

the amplitude equation), it is possible to derive from the amplitude equation

the linearized phase equation for small perturbations. (The linearized phase

equation can be considered the phase equation near threshold.) It is much

easier to derive the linearized phase equation from the amplitude equation

than it is to derive the full phase equation and then linearize it, and further-

more, the linearized phase equation possesses “phase diffusion,” one of the

main qualitative features of the phase equation.

Consider the K-system amplitude equation, rescaled slightly,

∂tA = εA+
(
∂x −

i

2k0
∂yy

)2

A− |A|2A. (2.31)

Suppose aκe
iκx is a solution (implying a2

κ = ε−κ2), and consider the perturbed

solution

A = (aκ + δa)ei(κx+δφ). (2.32)

Computing the various terms in the amplitude equation, neglecting derivatives

of δa that are higher than first-order, neglecting products of the derivatives of

δa and δφ, and neglecting higher-order powers of δa, we obtain

∂tA = (∂tδa)ei(κx+δφ) + i(∂tδφ)(aκ + δa)ei(κx+δφ)

∂xA = (∂xδa)ei(κx+δφ) + iκ(aκ + δa)ei(κx+δφ)

+i(∂xδφ)(aκ + δa)ei(κx+δφ),

∂xxA ≈ 2iκ(∂xδa)ei(κx+δφ) − κ2(aκ + δa)ei(κx+δφ)

−2κ(∂xδφ)(aκ + δa)ei(κx+δφ) + i(∂xxδφ)(aκ + δa)ei(κx+δφ),

∂yyA ≈ i(∂yyδφ)(aκ + δa)ei(κx+δφ),

∂x∂yyA ≈ i(∂x∂yyδφ)(aκ + δa)ei(κx+δφ) − κ(∂yyδφ)(aκ + δa)ei(κx+δφ),

−
i

k0

∂x∂yyA ≈
1

k0

(∂x∂yyδφ)(aκ + δa)ei(κx+δφ) + i
κ

k0

(∂yyδφ)(aκ + δa)ei(κx+δφ),
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−
1

4k2
0

∂4
yA ≈ −

i

4k2
0

(∂4
yδφ)(aκ + δa)ei(κx+δφ),

|A|2A ≈ (a3
κ + 3a2

κδa)ei(κx+δφ). (2.33)

The amplitude equation then implies (for small δa, δφ, and small derivatives

of δa and δφ),

∂tδa+ i(∂tδφ)(aκ + δa)

= ε(aκ + δa) + i2κ∂xδa− κ
2(aκ + δa)− 2κ(∂xδφ)(aκ + δa)

+i(∂xxδφ)(aκ + δa) +
1

k0

(∂x∂yyδφ)(aκ + δa)

+i
κ

k0
(∂yyδφ)(aκ + δa)−

i

4k2
0

(∂4
yδφ)(aκ + δa)− (a3

κ + 3a2
κδa)

= −2a2
κδa+ i2κ∂xδa− 2κ(∂xδφ)(aκ + δa) + i(∂xxδφ)(aκ + δa)

+
1

k0

(∂x∂yyδφ)(aκ + δa) + i
κ

k0

(∂yyδφ)(aκ + δa)−
i

4k2
0

(∂4
yδφ)(aκ + δa),

(2.34)

where we have used the fact that a2
κ = ε−κ2, since aκe

iκx satisfies the amplitude

equation. Breaking this equation into real and imaginary parts, we find that

the real part yields

∂tδa = −2a2
κδa− 2κ(∂xδφ)(aκ + δa) +

1

k0
(∂x∂yyδφ)(aκ + δa). (2.35)

The essential simplification involved in this approach to the phase equation is

to use the fact that magnitude perturbations relax much more quickly than

phase perturbations. We consider the changes in magnitude to occur instanta-

neously in response to the much slower phase changes and thereby suppress the

magnitude dynamics. This approach is physically meaningful after any initial

(possibly large) magnitude transient has relaxed. So neglecting the derivatives

(including the time derivative) of δa, neglecting the higher-order derivatives of

δφ, and neglecting other higher-order terms leads to

aκδa = −κ∂xδφ. (2.36)
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Similarly, neglecting the higher-order derivatives of δa and δφ and other higher-

order terms in the imaginary part of equation (2.34) yields

∂tδφ(aκ + δa) = 2κ∂xδa+ (∂xxδφ)(aκ + δa) +
κ

k0
(∂yyδφ)(aκ + δa),

∂tδφ =
2κ

aκ
∂xδa+ ∂xxδφ+

κ

k2
0

∂yyδφ. (2.37)

Plugging into this expression the expression derived for δa then gives

∂tδφ =
2κ

aκ
∂x

(
−
κ∂xδφ

aκ

)
+ ∂xxδφ+

κ

k0

∂yyδφ

= −
2κ2

ε− κ2
∂xxδφ+ ∂xxδφ+

κ

k0

∂yyδφ

=

(
1−

2κ2

ε− κ2

)
∂xxδφ+

κ

k0

∂yyδφ

=

(
ε− 3κ2

ε− κ2

)
∂xxδφ+

κ

k0
∂yyδφ. (2.38)

Thus, the linearized phase equation can be put in the form

∂tδφ = D‖∂xxδφ+D⊥∂yyδφ, (2.39)

where D‖ and D⊥ are the diffusion coefficients (for phase perturbations parallel

to and perpendicular to k0, respectively). This is the same form that results

from finding the full phase equation and then linearizing it in an appropriate

way.

2.3.2 Derivation of the phase equation using the reaction-diffusion

equation

We derive the phase equation for the reaction-diffusion equation

∂tu = D∆u + f(u), (2.40)

where we assume that D is symmetric. In order to derive a phase equation,

we need to assume a form for the ideal pattern, which we take to be parallel
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rolls since we are considering K-systems in two space dimensions. An ideal

solution has the general form

u(x, t; k) = uideal(k · x, k), (2.41)

where the wave vector k parametrizes the ideal solutions.

The procedure for deriving the phase equation is basically to define a

phase variable, rescale the time and space variables, and then perform a per-

turbation analysis. Define the local phase φ(x, t) in terms of the local wave

vector k(x, t) by

∇φ(x, t) = k(x, t). (2.42)

The perturbation expansion involves introducing the slow variables X and T ,

and using the diffusive scaling

X = εx, T = ε2t. (2.43)

Our solution is expanded as

u(φ,X, T ) = u(0)(φ,X, T ) + εu(1)(φ,X, T ) + · · · , (2.44)

where u(0) is the ideal pattern, and each of the u(i) are periodic in φ with

period 2π:

u(i)(φ,X, T ) = u(i)(φ+ 2π,X, T ). (2.45)

For the ideal pattern u(0), the dependence on (X, T ) is actually a dependence

on |∇xφ|.

We next define the scaled phase variable

Φ(X, T, ε) = εφ(x, t), (2.46)

so that

k̂(X, T ) = k(x, t) = ∇xφ(x, t) = ∇XΦ(X, T ). (2.47)
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A lengthy calculation (see Appendix A) yields the phase equation

∂tφ = f1(k)(∇ · k) + f2(k)(k · ∇)k,

k = ∇φ.
(2.48)

The functions f1 and f2 are calculated from u(0), the ideal pattern. Linearizing

the phase equation (see Appendix A) yields an equation of the same form

as equation (2.39), the linearized phase equation derived from the amplitude

equation.

The phase equation, equation (2.48), contains more information than

the linearized version, equation (2.39). However, the linearized version does

capture the important phenomenon of phase diffusion. As long as the diffu-

sion coefficients are positive (and where they change sign represent instability

boundaries for the ideal pattern of parallel rolls), the linearized phase equation

shows that very close to threshold (as required to be in the domain of validity

for the linearized phase equation), the rolls tend to regularize toward the ideal

pattern, at least locally. However, further from threshold, the higher-order

terms of the full phase equation have some influence.

Although the full phase equation captures the pattern behavior of the

system away from threshold better than the amplitude equation does, the

approach of controlling the pattern behavior using the phase equation would

be difficult. The phase equation is a complicated nonlinear PDE when ∇φ is

substituted in for k, and also depending on how the control entered the original

system equations, the control might enter the phase equation in a complicated

way.
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2.4 Results for general activator-inhibitor equations

2.4.1 Linearized analyses of spatially uniform equilibria and bifurca-

tions

The general form for activator-inhibitor dynamics is

τθ∂tθ = l2∆θ − q(θ, η, C),

τη∂tη = L2∆η −Q(θ, η, C),
(2.49)

where θ is the activator, η is the inhibitor; τθ, τη, l, and L are positive con-

stants setting the time and length scales for the variation of the activator

and inhibitor; C is the control (or bifurcation) parameter; and q and Q are

continuously differentiable functions satisfying

∂ηQ > 0, ∂θq < 0, (2.50)

for some range of values for C. Spatially uniform equilibria (or homogeneous

states) of the system, denoted by θh and ηh, are determined from

q(θh, ηh, C) = 0, Q(θh, ηh, C) = 0. (2.51)

A monostable system is one for which, with constant control parameter C,

there is only one solution (θh, ηh) of the equilibrium equations. (It is also

possible to have bistable systems for which there are three solutions to equation

(2.51), two of which are stable, and one of which is unstable.) For monostable

systems, θh(C) and ηh(C), the spatially uniform equilibrium activator and

inhibitor values as a function of control parameter, are single-valued. Applying

the local implicit function theorem about the spatially uniform equilibrium

(θh, ηh), we can solve [
q(θh, ηh, C)
Q(θh, ηh, C)

]
=

[
0
0

]
(2.52)
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for (θh, ηh) as a function of C if

det

[
∂θq ∂ηq
∂θQ ∂ηQ

]
= (∂θq)(∂ηQ)− (∂ηq)(∂θQ) 6= 0. (2.53)

There are two possibilities for the inequality, but the correct one to assume is

(∂θq)(∂ηQ)− (∂ηq)(∂θQ) > 0. (2.54)

The reason is that we generally want to think of ∂ηQ > 0 as being satisfied all

the time, but ∂θq < 0 as only being satisfied for certain values of the control

parameter. In the situation where both ∂ηQ > 0 and ∂θq > 0, if we consider

the linearization of the activator-inhibitor equations and ignore the Laplacian

terms, we obtain

∂t

[
τθθ
τηη

]
= −

[
∂θq ∂ηq
∂θQ ∂ηQ

] [
θ
η

]

= −

[
τ−1
θ ∂θq τ−1

η ∂ηq

τ−1
θ ∂θQ τ−1

η ∂ηQ

] [
τθθ
τηη

]
. (2.55)

The matrix has characteristic equation

(λ− τ−1
θ ∂θq)(λ− τ

−1
η ∂ηQ)− τ−1

θ τ−1
η (∂ηq)(∂θQ)

= λ2 − (τ−1
θ ∂θq + τ−1

η ∂ηQ)λ + τ−1
θ τ−1

η [(∂θq)(∂ηQ)− (∂ηq)(∂θQ)]

= 0, (2.56)

which leads to

λ =
1

2
(τ−1
θ ∂θq + τ−1

η ∂ηQ)

±

√√√√(τ−1
θ ∂θq + τ−1

η ∂ηQ

2

)2

− τ−1
θ τ−1

η [(∂θq)(∂ηQ)− (∂ηq)(∂θQ)]. (2.57)

The condition for the real parts of both roots to be positive is then inequality

(2.54), and this corresponds to stability for the linearized system we were

examining. Hence the choice of the “greater than” sign in inequality (2.54).
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As the control parameter C is changed, the spatially uniform equilibrium

can become unstable with respect to fluctuations of the form

δθ = δaθe
σt+ik·x,

δη = δaηe
σt+ik·x

(2.58)

about the homogenous solution (θh, ηh):

θ = θh + δθ,

η = ηh + δη.
(2.59)

Linearizing, we obtain

τθ∂tδθ = l2∆δθ − (∂θq)δθ − (∂ηq)δη,

τη∂tδη = L2∆δη − (∂θQ)δθ − (∂ηQ)δη,
(2.60)

and plugging in the form of the fluctuations gives

τθσδaθ = −k2l2δaθ − (∂θq)δaθ − (∂ηq)δaη,

τησδaη = −k2L2δaη − (∂θQ)δaθ − (∂ηQ)δaη,
(2.61)

i.e., [
(∂θq + k2l2 + τθσ) ∂ηq

∂θQ (∂ηQ+ k2L2 + τησ)

] [
δaθ
δaη

]
=

[
0
0

]
. (2.62)

For nonzero amplitudes (δaθ, δaη) to be possible, the determinant of the matrix

must be zero, leading to

(∂θq + k2l2 + τθσ)(∂ηQ+ k2L2 + τησ)− (∂θQ)(∂ηq) = 0,

(∂θq)(∂ηQ) + k2L2(∂θq) + k2l2(∂ηQ) + k4l2L2 + τησ(∂θq + k2l2)

+τθσ(∂ηQ+ k2L2) + τθτησ
2 − (∂θQ)(∂ηq) = 0,

(τθτη)σ
2 + [τη(∂θq + k2l2) + τθ(∂ηQ+ k2L2)]σ

+[k4l2L2 + k2L2(∂θq) + k2l2(∂ηQ) + (∂θq)(∂ηQ)− (∂θQ)(∂ηq)] = 0,
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σ = −
τη(∂θq + k2l2) + τθ(∂ηQ+ k2L2)

2τθτη

±

√√√√√√√√√√√

[τη(∂θq + k2l2) + τθ(∂ηQ+ k2L2)]2

4τ2
θ τ

2
η

−
k4l2L2 + k2L2(∂θq) + k2l2(∂ηQ) + (∂θq)(∂ηQ)− (∂θQ)(∂ηq)

τθτη

.

(2.63)

If Re(σ) > 0, then the spatially uniform equilibrium is unstable, and this is

the case if either of the following inequalities holds:

τη(∂θq + k2l2) + τθ(∂ηQ+ k2L2) < 0,

k4l2L2 + k2L2(∂θq) + k2l2(∂ηQ) + (∂θq)(∂ηQ)− (∂θQ)(∂ηq) < 0.
(2.64)

Examining the first inequality, we observe that since ∂θq < 0, if α =

τθ/τη << 1, then the first inequality can be satisfied for α sufficently small

and for k = 0. At the particular value of α for which the first inequality is

at the threshold of being satisfied, with k = 0, the frequency of oscillations is

given by

ω0 = Im(σ) =

√√√√(∂θq)(∂ηQ)− (∂θQ)(∂ηq)

τθτη
, (2.65)

where inequality (2.54) guarantees ω0 is real.

As for the second inequality, at the threshold of it being satisfied, ω =

Im(σ) = 0, so that the perturbation does not oscillate in time. In this case,

the critical wave number can be found from

(l2L2)(k2)2 + [L2(∂θq) + l2(∂ηQ)](k2) + (∂θq)(∂ηQ)− (∂θQ)(∂ηq) = 0. (2.66)
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In general, given an equation of the form

ak4 + bk2 + c = 0, a, c > 0, (2.67)

where we have the constraint that k must have a unique, real, positive value,

it follows that k = (c/a)1/4. Thus, the critical wave number is

k0 =

(
(∂θq)(∂ηQ)− (∂θQ)(∂ηq)

l2L2

)1/4

. (2.68)

The actual wave numbers of the bifurcating solutions are near k0.

We will now show that the second inequality of equation (2.64) is more

easily satisfied the smaller the quantity β = l/L is. Plugging in the value of

k0 into the second inequality of equation (2.64) gives

k4
0l

2L2 + k2
0[L2(∂θq) + l2(∂ηQ)] + (∂θq)(∂ηQ)− (∂θQ)(∂ηq) < 0,

[(∂θq)(∂ηQ)− (∂θQ)(∂ηq)]
1/2

lL
[L2(∂θq) + l2(∂ηQ)]

+2[(∂θq)(∂ηQ)− (∂θQ)(∂ηq)] < 0,

L2(∂θq) + l2(∂ηQ)

lL
+ 2[(∂θq)(∂ηQ)− (∂θQ)(∂ηq)]

1/2 < 0,

L2(∂θq) < −l2(∂ηQ)− 2lL[(∂θq)(∂ηQ)− (∂θQ)(∂ηq)]
1/2,

∂θq < −

(
l

L

)2

∂ηQ− 2

(
l

L

)
[(∂θq)(∂ηQ)− (∂θQ)(∂ηq)]

1/2,

∂θq < −β2∂ηQ− 2β[(∂θq)(∂ηQ)− (∂θQ)(∂ηq)]
1/2. (2.69)

Since from the formulation of the activator-inhibitor equations we have ∂θq <

0, it follows that for β sufficiently small, the condition for bifurcating to the

solution with ω = 0 and k = k0 is satisfied.

So for α << 1, we expect a bifurcation with nonzero ω0, and for β << 1,

we expect a bifurcation with nonzero k0. Therefore, when α << 1 but β > 1,

the activator-inhibitor equation (2.49) is an Ω-system, and when α > 1 but
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β << 1, it is a K-system. If α << 1 and β << 1, then we define the activator-

inhibitor system to be a KΩ-system, since it is then possible for both ω0 and

k0 to be nonzero.

2.4.2 Classification of general activator-inhibitor systems

We have already seen how activator-inhibitor equations of the general

form given by equation (2.49) can be classified as K-systems, Ω-systems, or

KΩ-systems depending on the values of α = τθ/τη and β = l/L. There is a

second type of classification based on the type of nonlinearity. For simplicity,

we assume that the significant nonlinearity is contained in the equilibrium

equation q(θ, η, C) = 0, which gives rise to the curve η = η̂(θ) for a fixed value

of C. For example, for the cubic nonlinearity model, η̂(θ) = θ3 − θ.

The cubic nonlinearity (or any odd-order nonlinearity with positive lead-

ing coefficient) has the nice property of ensuring that the spike solutions remain

modest in size. If the nonlinearity is quadratic instead of cubic, then it is pos-

sible for large-amplitude spike solutions (several orders of magnitude larger

than the modest spike solutions of the cubic nonlinearity model) to be stable

[8, 9]. Therefore, we focus on nonlinearities like the cubic nonlinearity, which

rule out large-amplitude spike solutions.

The cubic nonlinearity model is a model equation for general activator-

inhibitor equations having the same general shape for their η̂(θ) curves. We

expect that results obtained for the cubic nonlinearity model will apply qualita-

tively to any activator-inhibitor equation sharing the same important features

(i.e., the magnitude of α and β, and the general shape of the nonlinearity).

To summarize the types of spike solutions possible in monostable activator-
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inhibitor systems,

(1) narrow spike equilibria can occur in K-systems and in KΩ-systems with

either a cubic-type or quadratic-type nonlinearity;

(2) wide pulse equilibria can occur in K-systems and in KΩ-systems with a

cubic-type nonlinearity;

(3) pulsating and traveling narrow spike solutions can occur in KΩ-systems

with a cubic-type or quadratic-type nonlinearity;

(4) pulsating and traveling wide pulse solutions can occur in KΩ-systems

with a cubic-type nonlinearity;

(5) large-amplitude spike equilibria can occur in K-systems and in KΩ-

systems with a quadratic-type nonlinearity; and

(6) pulsating and traveling large-amplitude spike solutions can occur in KΩ-

systems with a quadratic-type nonlinearity [8, 9].

When traveling spike solutions collide, a static or pulsating spike solution may

result, so in general, the analysis of traveling spike collisions is complicated

[8, 9].

In bistable systems (which must have a cubic-type rather than quadratic-

type nonlinearity for there to be one unstable and two stable spatially uniform

equilibria), depending on the control parameter value, spike solutions analo-

gous to those in monostable systems can be stable (static spikes for K-systems

and KΩ-systems, and pulsating or traveling spikes in KΩ-systems). How-

ever, for other values of the control parameter, fronts (or domain boundaries)
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between regions of the two stable spatially uniform equilibria become the in-

teresting features. At a certain critical value of the control parameter, the

domain boundaries are static in K-systems, but otherwise, the domain walls

will move so that one of the spatially uniform equilibria takes over the entire

domain. In KΩ-systems, the same behavior can occur, but it is also possible

for the domain boundary to pulsate instead of remaining static at the critical

value of control parameter. The interesting feature of bistable systems is that

domain walls can be excited, and then change the state of the entire domain

from one spatially uniform equilibrium to the other [9]. Although we focus

primarily on monostable systems, much of the analysis (such as the Lyapunov

functional) also applies to bistable systems.

2.5 Analysis of spike solutions

2.5.1 Active transmission line without inhibitor diffusion or dissipa-

tion

An easy system to analyze for spike solutions is the active transmission-

line model without inhibitor diffusion or dissipation,

τθ∂tθ = l2∂xxθ − θ
3 + θ − C − ∂xη,

τη∂tη = −∂xθ.
(2.70)

The electrical circuit that gives rise to this system in the continuum limit is

discussed in section 3.2. The analysis of spike solutions for the activator-

inhibitor equation (2.49) is a generalization of the technique that can be used

to analyze traveling spike solutions for this active transmission-line model.

If we assume there is a steady-state traveling solution
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θ(x, t) = θ̃(x− vt),

η(x, t) = η̃(x− vt),
(2.71)

and we let ξ = x− vt, then we find

−τθv∂ξ θ̃ = l2∂ξξ θ̃ − θ̃
3 + θ̃ − C − ∂ξη̃,

−τηv∂ξη̃ = −∂ξ θ̃.
(2.72)

If we take v = 1/
√
τθτη, we obtain

l2∂ξξ θ̃ − θ̃
3 + θ̃ − C = 0. (2.73)

If we consider equation (2.73) as a boundary-value problem, we can solve for

possible steady state pulse shapes θ̃(ξ). In fact, we can write equation (2.73)

as

l2∂ξξ θ̃ = −
dV

dθ̃
, (2.74)

where

V (θ̃) = −
1

4
θ̃4 +

1

2
θ̃2 − Cθ̃. (2.75)

Thus, if equation (2.73) is viewed as a dynamical system instead of as a

boundary-value problem (i.e., if ξ is interpreted as time instead of as a spatial

variable), then the dynamics are those of a particle with mass l2 moving in a

potential V (θ̃).

The possible trajectories for a particle moving in the potential V (θ̃) are

easily visualized by using the standard graphical technique in which the phase-

plane trajectories are derived from the plot of the potential. Changing to more

familiar variables, suppose we have

m
d2x

dt2
= −

dV

dx
,

V (x) = −
1

4
x4 +

1

2
x2 − Cx.

(2.76)
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Figure 2.2: Phase plane for the potential function V (x) = −(1/4)x4+(1/2)x2−
Cx

Taking m = 1 and letting y = dx/dt, we obtain the system of first-order ODEs,

dx

dt
= y,

dy

dt
= −

dV

dx
.

(2.77)

The slope of the phase-plane trajectories are then found from

dy

dx
=
dy/dt

dx/dt
= −

dV/dx

y
. (2.78)

The phase plane is illustrated in figure 2.2. The trajectory of interest is the

separatrix trajectory, because the separatrix trajectory corresponds to a single

spike. The traveling spike corresponding to the separatrix trajectory is shown

in figure 2.3.

An alternative approach to the phase-plane approach is to use elliptic

functions to solve for θ̃ in equation (2.73). Equation (2.73) is a special case of

the general elliptic equation

d2x

dt2
= a0 + a1x+ a2x

2 + a3x
3, (2.79)
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Figure 2.3: Traveling spike solution corresponding to the separatrix trajectory

where a1, ..., a3 are constants, which can be solved explicitly for x(t) using

elliptic functions [34].

There still remains the issue of determining other possible traveling so-

lutions, and then assessing stability of the various traveling solutions.

2.5.2 General activator-inhibitor system

The analysis of spike solutions for the general activator-inhibitor system

(2.49) involves simultaneously performing two particle-in-a-potential calcula-

tions like the one required for the active transmission line spike of the previous

subsection. We assume that the system is monostable, and that the spatially

uniform equilibrium solution is stable. We also assume one space dimension.

We are looking for solutions of

l2
d2θ

dx2
= q(θ, η, C),

L2 d
2η

dx2
= Q(θ, η, C).

(2.80)

Because both η and θ are functions of x, these equations are coupled, and there-
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fore difficult to analyze. However, there are two limiting cases which we can

analyze, and then try to argue that the actual solution is approximated by

these limiting cases. The first case is l → 0, which leads to the “smooth”

distributions, and the second case is L→ ∞, which leads to the “sharp” dis-

tributions. (Mathematically, the smooth/sharp distribution analysis technique

is related to singular perturbation analysis.)

For the smooth distribution case, setting l → 0 in the above equations

leads to

q(θ, η, C) = 0,

L2 d
2η

dx2
= Q(θ, η, C).

(2.81)

Both θ and η are functions of x, but for this case, θ can be viewed as a function

of η, with the dependence given by q(θ(η), η, C) = 0. With θ(η) known, the

equation for η can be written as

L2 d
2η

dx2
= −

dUη

dη
, Uη = −

∫ η

Q(θ(η̄), η̄, C)dη̄. (2.82)

This equation is of the same form as the equation of the particle moving in

a potential field. Since θ is actually a multivalued function of η, there are

multiple branches of the potential function Uη that need to be properly pieced

together.

For the sharp distribution case, setting L → ∞ in the above equations

leads to

l2
d2θ

dx2
= q(θ, η, C),

〈Q(θ, η, C)〉 = spatial average of Q(θ, η, C) = 0,

(2.83)

with η =constant. To better see how the second equation is derived, we con-
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sider the dynamical equation for the inhibitor,

τη∂tη = L2∆η −Q(θ, η, C). (2.84)

For L very large, η varies significantly only over a very large distance. We

therefore can consider η to be spatially uniform, and write

τη∂tη = −
1

|Ω|

∫
Ω
Q(θ, η, C)dx = −〈Q(θ, η, C)〉, (2.85)

where |Ω| =
∫
Ω dx is the system “volume,” and the angle-bracket notation is

being used to denote the spatial average over the system. Next, since we are

concerned with equilibrium solutions, we set ∂tη = 0, arriving at 〈Q(θ, η, C)〉 =

0 with η =constant. With η =constant, the equation for θ can be written as

l2
d2θ

dx2
= −

dUθ
dθ

, Uθ = −
∫ θ

q(θ̄, η, C)dθ̄. (2.86)

Again, this equation is of the same form as the equation of the particle moving

in a potential field.

Once the form of spike solutions (or other equilibria) have been found,

the next task is to determine their stability. A linearized stability analysis

technique gives conditions for stability of the wide pulse and narrow spike

equilibria, and also leads to the conclusion that other equilibria (those having

multiple peaks) are unstable [8, 9]. Actually checking the wide pulse and

narrow spike stability criteria for a general activator-inhibitor system would

be cumbersome. Formulas can also be found for the wide pulse solution pulse

width [8, 9].

Traveling spike shapes in one space dimension appear qualitatively simi-

lar whether they arise in KΩ-systems or in the cubic nonlinearity model with

β << 1 and α > 1 but with an additional advective term. A left-traveling

spike in the latter type of system is shown in figure 2.4. The shape of the
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Figure 2.4: Traveling spike for the cubic nonlinearity model with an additional
advective term

traveling spike can be derived using an approach similar to the approach used

to find the equilibrium wide pulse and narrow spike shapes [8, 9].
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Chapter 3

Engineering Realizations of Activator-Inhibitor

Equations

3.1 Basic cubic nonlinearity model

There are several ways to think about implementing the basic cubic non-

linearity model dynamics,

τθ∂tθ = l2∆θ − θ3 + θ + η,

τη∂tη = L2∆η − η − θ + C,
(3.1)

for controlling a large array of actuators. We will focus on the MEMS applica-

tions, and consider implementations of spatial discretizations of the dynamics.

In this context, there are two types of realizations we can consider: digital

and analog. (A third possible realization, which is intermediate between digi-

tal and analog, is a pulse-train-based approach, where the frequency of pulse

trains is used to encode analog values with high dynamic range [35].)

A digital implementation of the spatially discretized dynamics might be

possible when relatively large MEMS actuators are to be controlled. The ac-

tuators would have to be large because of the area required for digital circuitry

to perform the calculations at each site. At the expense of greater complexity,

one could also design a digital implementation in which a number of actu-

ators shared the same computational circuitry in order to keep the area of

the digital circuitry small enough. Besides the usual advantages of a digital

approach, such as simple biasing and highly accurate computations, the unifor-

mity across the array would make it possible to work with the pattern-forming
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system very close to the bifurcation threshold. With a digital approach, there

might be hope of developing control schemes based on the equivariant ampli-

tude equation, because keeping the system in the amplitude equation’s domain

of validity would be a possibiliy.

However, an analog implementation would inherently lack the uniformity

required to operate very close to the bifurcation threshold, since analog circuits

are sensitive to processing variations that lead to device nonuniformities across

a chip. The main advantage of an analog implementation, however, is compact

size, and if the actuators are small enough, an analog approach might be

preferred for that reason. We are therefore led to consider how we might

control the nonlinear dynamics themselves, rather than focusing on envelope

equations. Implementation issues also lead to consideration of the bounded

nonlinearity model, since an analog nonlinearity would necessarily saturate

eventually.

There are different forms that an analog implementation could take, but

the simplest approach is to consider both θ and η to be voltages. (By contrast,

the active transmission line naturally leads to a realization with θ a voltage

and η a current.) Resistive coupling can be used to implement the diffusion,

capacitors can implement the time constants, an active element can be used

for the nonlinearity and positive feedback, and all that remains is to imple-

ment the coupling. One possible scheme is illustrated in figure 3.1, where the

diode symbol (representing a tunnel diode) denotes the nonlinear, negative-

incremental-gain element. The biasing circuitry for the tunnel diode is not

shown.

From figure 3.1, the equations for θk and ηk are
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Figure 3.1: An implementation of the spatially discretized cubic nonlinearity
model dynamics
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(τθδ)θ̇k =
l2

δ
(θk+1 − θk) +

l2

δ
(θk−1 − θk)− (θ3

k − 2θk + C)δ + (ηk − θk)δ,

(τηδ)η̇k =
L2

δ
(ηk+1 − ηk) +

L2

δ
(ηk−1 − ηk) + (−θk − ηk)δ,

(3.2)

which simplifies to

τθ θ̇k =
l2

δ2
(θk+1 − 2θk + θk−1)− θ3

k + θk + ηk − C,

τηη̇k =
L2

δ2
(ηk+1 − 2ηk + ηk−1)− ηk − θk.

(3.3)

In the continuum limit (i.e., taking δ → 0), these equations become

τθ∂tθ = l2∂xxθ − θ
3 + θ + η − C,

τη∂tη = L2∂xxη − η − θ.
(3.4)

The control parameter can be moved to the inhibitor equation by taking η̃ =

η − C (although there is no problem with having the control parameter in

the activator equation as opposed to the inhibitor equation). The circuit of

figure 3.1 generalizes to two dimensions by making the resistive grids two-

dimensional.

An analog computer implementing essentially the cubic nonlinearity model

was built by Purwins et. al. [36]. In their circuit, the inhibitor was the voltage

across a capacitor and the activator was the current through an inductor; there-

fore, the nonlinearity had to be implemented as an S-shaped I-V characteristic.

(By contrast, in the circuit of figure 3.1, the tunnel diode I-V characteristic is

N-shaped.) Also, a diffusive coupling mechanism had to be provided between

the inductor currents. The purpose of their analog computer was for simu-

lating gas discharge systems, which also have the S-shaped I-V characteristic

[7].

The analog computer of Purwins et. al., was designed the way it was
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because of the physical analogy with gas discharge systems, and because the

implementation used discrete components rather than integrated circuit tech-

nology. For smart-systems applications, the only possible implementations of

pattern-forming systems are in integrated circuit technology or in smart mate-

rials technology, since as was pointed out earlier, conventional approaches are

only threatened when the number of actuators is in the millions. The analog

computer of Purwins et. al. had only 31 by 31 sites. The circuit of figure 3.1

is implementable in integrated circuit technology, and CMOS amplifiers can

be used instead of tunnel diodes, if desired.

3.2 Active transmission line

The basic cubic nonlinearity activator-inhibitor equation has a +η cou-

pling term in the ∂tθ equation and a −θ coupling term in the ∂tη equation. A

different but related equation in one spatial dimension takes the form

τθ∂tθ = l2∂xxθ − θ
3 + θ − C − ∂xη,

τη∂tη = L2∂xxη − η − ∂xθ,
(3.5)

where for reasons that will become clear later we have moved the control (or

bifurcation) parameter C from the ∂tη equation to the ∂tθ equation.

The reason for calling this system an “active transmission line” is that

when only the coupling terms are retained,

τθ∂tθ = −∂xη,

τη∂tη = −∂xθ,
(3.6)

the system reduces to the wave equation for a transmission line,
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∂ttθ =
1

τθτη
∂xxθ,

∂ttη =
1

τθτη
∂xxη,

(3.7)

where θ represents voltage, η represents current, τθ represents capacitance per

unit length, τη represents inductance per unit length, and 1/
√
τθτη is the speed

of traveling solutions. The additional terms in equation (3.5) add gain and

dissipation.

There are two main circuit motivations for using active transmission lines.

First, the active elements placed along the length of the transmission line

could potentially serve as a simpler and more robust mechanism for overcom-

ing transmission line losses than discrete repeaters. Second, for transmission

lines on an integrated circuit chip, active transmission lines could be used to

alleviate fanout problems [37]. This second application is important in the

smart-system context, where it may be desirable to have large numbers of

interconnections between processing elements. For example, the long-range

coupling that could serve to stabilize patterns for the basic cubic nonlinearity

model in two or more dimensions implies a relatively large fanout from each

element to all its neighbors a certain distance away. Biological neural systems

are also characterized by large fanout, and some neural interconnections use

active transmission lines. The reason active transmission lines help with fanout

problems is that the transmission line only needs to be excited at one end, and

then the transmission line itself supplies the power necessary to propagate a

pulse along its length. With passive transmission lines, the source needs to be

able to drive enough current into each transmission line it is connected to in

order to send sufficiently large pulses to the receivers.
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Figure 3.2: Active transmission-line circuit with inhibitor diffusion and dissi-
pation

The circuit in figure 3.2 resembles a discrete approximation to a trans-

mission line, with additional tunnel diodes added. The resistors in series with

the inductors can be thought of as distributed resistance along the length of

the inductors. Series resistance associated with the capacitors can be consid-

ered to be absorbed into the tunnel diode model. Series resistances (and the

capacitances and inductances) scale with δ, and the parallel resistances scale

as 1/δ. The equations for ηk, Vk, and θk are

Vk − θk =
L2

δ
(ηk−1 − ηk),

(τθδ)θ̇k + (θ3
k − θk + C)δ +

l2

δ
(θk − θk−1) +

l2

δ
(θk − θk+1) = ηk−1 − ηk, (3.8)

(τηδ)η̇k + (δ)ηk = Vk − Vk+1.

These equations can be simplified to
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τθ θ̇k =
l2

δ2
(θk−1 − 2θk + θk+1)− θ3

k + θk − C −
1

δ
(ηk − ηk−1),

τθη̇k = −ηk +
1

δ

[
θk +

L2

δ
(ηk−1 − ηk)− θk+1 −

L2

δ
(ηk − ηk+1)

]

=
L2

δ2
(ηk−1 − 2ηk + ηk+1)− ηk −

1

δ
(θk+1 − θk).

(3.9)

In the continuum limit (i.e., taking δ → 0), these equations become

τθ∂tθ = l2∂xxθ − θ
3 + θ − C − ∂xη,

τη∂tη = L2∂xxη − η − ∂xθ.
(3.10)

Note that the control parameter is naturally associated with the tun-

nel diode characteristic. Although this is one motivation for moving the

control parameter from the ∂tη equation to the ∂tθ equation, it is not the

only reason. The main reason is that the spatially uniform equilibria satisfy

θ3 − θ + C = 0,

η = 0,
(3.11)

so that there is no coupling between these equilibrium equations. In fact,

adding a constant to the ∂tη equation has no effect on the dynamics, but

adding a constant to the ∂tθ equation does. Therefore, the control parameter

for the active transmission line belongs with the ∂tθ equation.

Figure 3.3 shows the active transmission line circuit without inhibitor

diffusion or dissipation. The corresponding PDE system is

τθ∂tθ = l2∂xxθ − θ
3 + θ − C − ∂xη,

τη∂tη = −∂xθ.
(3.12)

The resistors in figure 3.3 could represent coupling between the biasing net-

works for the tunnel diodes, rather than resistors explicitly added to the cir-
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Figure 3.3: Active transmission-line circuit without inhibitor diffusion or dis-
sipation

cuit. Since l determines the length scale of both the activator and inhibitor for

this system, keeping these resistances large leads to a narrow traveling spike

solution.

3.3 Complex activator-inhibitor equation

The complex activator-inhibitor equation

τθ∂tθ = l2∆θ − |θ|2θ + θ + η,

τη∂tη = L2∆η − η − θ + C,
(3.13)

where θ, η, and C are complex, under suitable hypotheses, models the ampli-

tude and phase evolution in the continuum limit of a network of coupled van

der Pol oscillators (represented by θ), coupled to a network of resonant circuits

(represented by η), with an external oscillating input (represented by C). The

resonant frequencies of the van der Pol oscillators and the resonant circuits are

assumed to be identical, and also equal to the frequency of the external input

C.
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The potential applications of the coupled van der Pol oscillator network

modeled by the complex activator-inhibitor equation include quasi-optical power

combining and phased-array antennas for microwave communications and radar

[38, 39, 40]. As communications frequencies become higher and higher, for ex-

ample, to provide high bandwidth for wireless LANs, oscillators built using

solid state circuits are able to generate less and less microwave power. The

only low-loss means of combining the power from many such oscillators is

having the combining occur in free space, with the oscillators synchronized.

Coupling between the oscillators, either through free space as well, or through

electrical coupling, is used to cause the oscillators to synchronize, or frequency-

lock with all oscillators in phase [41, 42, 43]. By having the oscillators not only

frequency-lock, but also phase-lock with some prescribed phase relationship,

it is possible to generate radiation patterns other than the simple broadside

pattern which results from having all of the oscillators synchronized in phase

as well as frequency.

To motivate the equations for the coupled van der Pol oscillator net-

work model, we consider the microwave quasi-optical power-combining system.

There are a number of nearly identical electrical oscillator circuits, which can

be considered to be van der Pol oscillators, coupled together through some

linear coupling network. Further assumptions on the oscillators and on the

coupling will be introduced and explained as required.

We will first examine the coupled van der Pol oscillator part of the sys-

tem, without the resonant circuit part. We will also consider a general linear

coupling network instead of the specific network related to the Laplacian for

the complex activator-inhibitor equation (3.13). One derivation of the coupled

van der Pol oscillator network equations is based on an array of oscillators
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Figure 3.4: Oscillator array with linear coupling network

connected to an n-port coupling network described by Y-parameters [38]. Fig-

ure 3.4 illustrates the coupled oscillator network, and the various admittances

used in the analysis.

The equation relating the terminal voltages and terminal admittances for

the Y-parameter linear coupling network is

Ycn,j(ωj, V1, ..., Vn) =
1

Vj

∑
k

Yjk(ωj)Vk. (3.14)

Each oscillator in the array is taken to be the parallel RLC van der Pol oscil-

lator circuit shown in figure 3.5.

The second-order differential equation describing a van der Pol oscillator
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Figure 3.5: Van der Pol oscillator circuit model

can be put in the form

d2V

dτ2
− ε(1− V 2)

dV

dτ
+ V = 0, (3.15)

where ε > 0 and τ is an appropriately scaled time parameter (and the voltage

V is appropriately scaled as well). If ε << 1, then a perturbation analysis

shows that the solution to the van der Pol equation can be approximated

by a sine wave [44]. We also assume weak coupling, so that we can neglect

deviation of the solution from a sine wave due to the effects of coupling. The

parameter ε in the van der Pol equation is the reciprocal of the Q of the

RLC circuit of figure 3.5, where Qj = ω0jCj/|G0j| = 1/(ω0jLj|G0j|) with

ω0j = 1/
√
LjCj, and G0j < 0 is the small-signal portion of GDj which produces

the linear instability. Therefore, the first assumption required of the van der

Pol oscillators is that the Q of each oscillator be large. (We will first derive

the equations under the assumption that each oscillator has a different free-

running frequency ω0j , and later specialize to the case of identical free-running

oscillator natural frequencies.)

With the assumption that each oscillator voltage signal is nearly sinusio-
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dal, we can represent the voltages as

Vj(t) = Aj(t)e
i(ω0j t+φj(t)), (3.16)

where Aj(t) is a slowly varying amplitude quantity and φj(t) is a slowly vary-

ing phase quantity. (The requirement that Aj(t) and φj(t) be slowly varying

will be made more precise later.) Under the large-Q assumption, we can there-

fore treat the negative-conductance circuit element as a simple conductance

depending on the sine-wave amplitude Aj , and we further assume that form

of the conductance as a function of Aj is given by

GDj = −|G0j|(1− γjA
2
j), (3.17)

where γj is a scalar parameter. The admittance for each oscillator can then

be written

Yosc,j(ωj, Vj) = iωjCj +
1

iωjLj
− |G0j|

(
1− γjA

2
j

)
, (3.18)

where ωj is the (slowly varying) frequency of the jth oscillator.

The total admittance at each port of the coupling network is then the

sum of the coupling network port admittance Ycn,j (given by equation (3.14))

and the oscillator admittance Yosc,j:

Yj(ωj ,V) = Yosc,j(ωj , Vj) + Ycn,j(ωj,V)

= iωjCj +
1

iωjLj
− |G0j|(1− γjA

2
j)

+
∑
k

Yjk(ωj)
Ak

Aj
ei[(ω0k−ω0j)t+(φk−φj)], (3.19)

where V = (V1, ..., Vn). The classical harmonic balance condition for the exis-

tence of an oscillation at the (slowly varying) frequency ωj is [45]

Yj(ωj ,V) = 0, (3.20)
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which can be expanded in a Taylor series about ω0j as

Yj(ω0j ,V) +
∂Yj

∂ωj

∣∣∣∣
ω0j

(ωj − ω0j) + · · · = 0. (3.21)

But ωj − ω0j can be expressed as follows:

dVj

dt
= i

[
ω0j +

dφj

dt
− i

1

Aj

dAj

dt

]
Vj = iωjVj,

ωj − ω0j =
dφj

dt
− i

1

Aj

dAj

dt
. (3.22)

Thus, the explicit requirement that Aj(t) and φj(t) be slowly varying is

dφj
dt

<< ω0j,
1

Aj

dAj
dt

<< ω0j . (3.23)

Then, under harmonic balance,

dφj
dt
− i

1

Aj

dAj
dt

= −
Yj

∂Yj/∂ωj

∣∣∣∣
ω0j

, (3.24)

which can be broken down into separate equations for Aj and φj as

dφj

dt
= −Re

(
Yj

∂Yj/∂ωj

∣∣∣∣
ω0j

)
,

dAj
dt

= AjIm

(
Yj

∂Yj/∂ωj

∣∣∣∣
ω0j

)
.

(3.25)

The quantity ∂Yj/∂ωj evaluated at ω0j is computed as follows:

∂Yj
∂ωj

∣∣∣∣
ω0j

= iCj −
1

iLj

1

ω2
0j

+
∑
k

∂Yjk
∂ωj

∣∣∣∣
ω0j

Ak
Aj
ei[(ω0k−ω0j)t+(φk−φj)]

= 2iCj +
∑
k

∂Yjk

∂ωj

∣∣∣∣
ω0j

Ak

Aj
ei[(ω0k−ω0j)t+(φk−φj)]. (3.26)

Defining the normalized coupling parameters κjk by

κjk = Yjk/|G0j| (3.27)

and substituting Qj = ω0jCj/|G0j|, we obtain

Yj

∂Yj/∂ωj

∣∣∣∣
ω0j

= i
ω0j

2Qj

(1− γjA2
j)−

∑
k κjk

Ak
Aj
ei[(ω0k−ω0j)t+(φk−φj)]

1− i ω0j

2Qj

∑
k
∂κjk
∂ωj
|ω0j

Ak
Aj
ei[(ω0k−ω0j)t+(φk−φj)]

 . (3.28)
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Examining this expression, we see that considerable simplification can achieved

if in the denominator,

ω0j

2Qj

∑
k

∂κjk
∂ωj

∣∣∣∣
ω0j

Ak
Aj

<< 1, ∀j. (3.29)

This is a condition on the coupling network; specifically, as pointed out by

York et. al., it is a requirement that the coupling network characteristics vary

with frequency much less than the oscillator characteristics, or in other words,

that the coupling network be broadband compared to the oscillator networks

[38].

With the broadband coupling network assumption, the magnitude and

phase dynamics can be written as

dAj
dt

=
ω0j

2Qj

(1− γjA
2
j)Aj

+
ω0j

2Qj

∑
k

AkKjk cos[(ω0k − ω0j)t+ (φk − φj) + ψjk + π], (3.30)

dφj
dt

=
ω0j

2Qj

1

Aj

∑
k

AkKjk sin[(ω0k − ω0j)t+ (φk − φj) + ψjk + π],

where κjk = Kjke
iψjk . Defining

dξj
dt

= ω0j +
dφj
dt
, (3.31)

we can remove the explicit time dependence from the right-hand side of equa-

tion (3.30), obtaining

dAj
dt

=
ω0j

2Qj

(1− γjA
2
j)Aj +

ω0j

2Qj

∑
k

AkKjk cos[ξk − ξj + ψjk + π],

dξj
dt

= ω0j +
ω0j

2Qj

1

Aj

∑
k

AkKjk sin[ξk − ξj + ψjk + π].

(3.32)

Now assume that the oscillators are identical. Then equation (3.30) in fact does

not have an explicit time dependence on the right-hand side, and the dynamics

simplify to
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dAj

dt
= c1(1− γA2

j)Aj + c2

∑
k

AkKjk cos(φk − φj − ϕjk),

dφj
dt

= c2
1

Aj

∑
k

AkKjk sin(φk − φj − ϕjk),

(3.33)

where c1, c2, and γ are constants and ϕjk = −(ψjk+π). Under the assumption

that κjj is purely real ∀j and the same constant ∀j (κjj is just the normal-

ized admittance of the coupling network seen at port j when all of the other

ports of the coupling network are short-circuited), the AjKjj cos(0) term can

be pulled out of the sum in the dAj/dt expression and combined with the

nonlinear term, while in the dφj/dt expression, the AjKjj sin(0) term simply

drops out, leaving

dAj
dt

= c1(c3 − γA
2
j)Aj + c2

∑
k 6=j

AkKjk cos(φk − φj − ϕjk),

dφj
dt

= c2
1

Aj

∑
k 6=j

AkKjk sin(φk − φj − ϕjk).

(3.34)

Rescaling to eliminate extraneous constants, we can finally write the dynamics

in the form

dAj
dt

= (1− γA2
j)Aj +

∑
k

AkKjk cos(φk − φj − ϕjk),

dφj

dt
=

1

Aj

∑
k

AkKjk sin(φk − φj − ϕjk),

(3.35)

where γ > 0 is a scalar parameter determining the uncoupled equilibrium am-

plitude of the oscillators. The coordinate system is rotating at the natural

frequency of the oscillators so that the dφj/dt equations represent the phase

dynamics of the coupled oscillator network. These dynamics can also be writ-

ten in the form
dxj
dt

= (1− γ|xj|
2)xj +

∑
k

xkwjk, (3.36)

where the xj = Aje
iφj and wjk = Kjke

iϕjk are complex.
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If the coupling between the oscillators is purely real nearest-neighbor

passive coupling, the dynamics (3.36) can be thought of as a discretization of

the complex Ginzburg-Landau equation in n dimensions with real coefficients:

∂tθ = l2∆θ + (1− |θ|2)θ, x ∈ Rn, t > 0, θ ∈ C. (3.37)

If the nonlinear conductance element GLj in figure 3.5 is replaced with a linear,

positive conductance, the same analysis with the same assumptions leads to a

network of coupled resonant circuits. With the same assumptions on the cou-

pling network as for the coupled-oscillator case, the dynamics for the coupled

resonant circuits can be written as

∂tη = L2∆η − η, x ∈ Rn, t > 0, η ∈ C. (3.38)

The coupling between the oscillator array and resonator array needs to take

a form analogous to the coupling between activator and inhibitor voltages for

the real cubic nonlinearity model implementation shown in figure 3.1. Finally,

injecting a sinusiodal signal of constant amplitude and phase at the common

resonant frequency of the resonant circuits (which is also the same as the

natural frequency of the oscillator circuits), we obtain the complex activator-

inhibitor equation (3.13).

To summarize, the following assumptions were required on the network

of coupled van der Pol oscillators and coupled resonant circuits to obtain the

complex activator-inhibitor equation:

(1) The weak coupling assumption ensures that none of the oscillator wave-

forms is distorted by the coupling.

(2) The high-Q assumption on the oscillators ensures that each oscillator

voltage is well-modeled as sinusoidal.
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(3) The slowly-varying magnitude and phase condition is required to ensure

the validity of the Taylor series expansion for finding the slowly varying

frequency ωj of each oscillator.

(4) The broadband-coupling-network assumption is required to keep the cou-

pled oscillator equations managable.

(5) The free-running natural frequencies of the oscillators and resonant cir-

cuits are all assumed to be identical (and also equal to the frequency of

the external input signal).

(6) The coupling networks give rise to Laplacian terms in the continuum

limit. (Assumption (6) guarantees assumption (4) is satisfied, since a

purely resistive coupling network has no frequency dependence.)

The boundary conditions that arise naturally in this coupled-oscillator

context are Neumann boundary conditions involving the magnitudes of θ and

η, and periodic boundary conditions. Dirichlet boundary conditions (i.e., θ =

η = 0 on ∂Ω) could be physically implemented, but require “oscillator death”

at the edges of the network. If we let θR = Re{θ} and θI = Im{θ}, then the

Neumann (or no-flux) boundary conditions are

θR(∇θR · n) + θI(∇θI · n) = 0,

ηR(∇ηR · n) + ηI(∇ηI · n) = 0,
(3.39)

for x ∈ ∂Ω, where n is the unit outer normal for ∂Ω.
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Chapter 4

Basic Properties of Solutions

4.1 Introduction

To be on a secure mathematical footing for the dissipativity analysis

at the end of this chapter and the Lyapunov functional analysis of the next

chapter, we need to prove the existence and uniqueness of weak solutions for

the PDE systems we are analyzing, and also show that the weak solutions

have the required regularity. Another reason for showing the details of the

existence, uniqueness, and regularity proofs is so that modified versions of the

equations (e.g., with control inputs or feedback) can be easily checked for these

properties. Also, to keep the classes of systems for which the results can be

generalized as large as possible, we only seek to prove the minimum regularity

necessary for the subsequent analysis.

The classes of models we analyze for existence and uniqueness of weak

solutions divide along slightly different lines than the classifications based on

their physical origins. The basic cubic nonlinearity model

τθ∂tθ = l2∆θ − θ3 + θ + η,

τη∂tη = L2∆η − η − θ + C
(4.1)

will be considered in the context of the more general class of models

τθ∂tθ + Lθθ + fθ(θ) = η,

τη∂tη + Lηη + fη(η) = −θ,
(4.2)

which we will call the “general polynomial-nonlinearity model,” where

Lθ = uniformly parabolic operator for the θ equation,
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Lη = uniformly parabolic operator for the η equation,

fθ(θ) = odd-order polynomial in θ with positive leading coefficient,

fη(η) = odd-order polynomial in η with positive leading coefficient.

The active transmission-line model

τθ∂tθ = l2∂xxθ − θ
3 + θ − C − ∂xη,

τη∂tη = L2∂xxη − η − ∂xθ
(4.3)

lies in the general class

τθ∂tθ + Lθθ + fθ(θ) = −∂xη,

τη∂tη + Lηη + fη(η) = −∂xθ
(4.4)

in one space dimension, which we will call the “general parabolic active trans-

mission-line model.” The analysis of the general polynomial-nonlinearity model

and the general parabolic active transmission-line model are so similar that

the modifications required for the general parabolic active transmission-line

model proofs will be stated as parenthetical remarks in the general polynomial-

nonlinearity model proofs.

The cubic nonlinearity model with additional advective terms also falls

within the general polynomial-nonlinearity model; for example,

τθ∂tθ = l2∆θ − θ3 + θ + η,

τη∂tη = L2∆η − η − θ + C + v · ∇η,
(4.5)

where v is a continuously differentiable function of x.

The active transmission-line model without inhibitor diffusion,

τθ∂tθ = l2∂xxθ − θ
3 + θ − C − ∂xη,

τη∂tη = −∂xθ,
(4.6)

requires a separate analysis, since it is both parabolic and hyperbolic in char-
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acter. The existence and uniqueness proofs for this active transmission-line

model actually require regularity results from the general parabolic active

transmission-line model.

The bounded nonlinearity model,

τθ∂tθ = l2∆θ − f(θ) + η,

τη∂tη = L2∆η − η − θ + C,
(4.7)

where f is continuous and ∀θ, |f(θ)| < M for some M > 0, actually has

simpler proofs of existence and uniqueness of weak solutions than the general

polynomial-nonlinearity model.

Existence and uniqueness of weak solutions for the complex activator-

inhibitor equation,

τθ∂tθ = l2∆θ − |θ|2θ + θ + η,

τη∂tη = L2∆η − η − θ + C,
(4.8)

follow analogously to the real case when the dynamics are written as a system

of two coupled real activator-inhibitor systems. Another easy generalization

of the general polynomial-nonlinearity model analysis is the addition of sym-

metric long-range coupling terms. (There are other generalizations as well,

but only the complex activator-inhibitor equation and symmetric long-range

coupling will be considered here.)

After existence, uniqueness, and regularity of weak solutions have been

established, it is also possible to prove a dissipativity property for certain

subclasses of the general models. We will establish dissipativity results for the

cubic nonlinearity model (both real and complex), the active transmission-

line model (with inhibitor diffusion and dissipation), the cubic nonlinearity

model with an additional (suitably bounded) advective term, and the cubic
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nonlinearity model with additional long-range coupling.

4.2 Existence and uniqueness of weak solutions for the

general polynomial-nonlinearity model

4.2.1 Definition of weak solutions

We will now prove the existence and uniqueness of weak solutions for

the system (4.2), the general polynomial-nonlinearity model. The existence

and uniqueness results parallel those for parabolic PDEs, since the activator-

inhibitor equations are a system of two parabolic PDEs [46, 47]. However, the

linear form of the coupling terms between the activator and inhibitor equations

is also key to the success of the analysis. Throughout this analysis, we are

considering the domain Ω ⊂ Rn in which x lies to be open and bounded.

First, we need to define the bilinear forms Bθ and Bη. A parabolic

operator Lu can be written in either divergence form:

Luu = −
n∑

i,j=1

∂xj(aij(x, t)∂xiu) +
n∑
i=1

bi(x, t)∂xiu+ c(x, t)u, (4.9)

or in nondivergence form

Luu = −
n∑

i,j=1

aij(x, t)∂xj(∂xiu) +
n∑
i=1

bi(x, t)∂xiu+ c(x, t)u, (4.10)

where in either case, aij , bj, c ∈ R and we further assume that aij = aji. If

the aij are C1 functions, then any operator written in divergence form can be

written in nondivergence form and vice versa [46]. We will, in fact, assume that

the aij are C1 functions of both x and t, and that the bi and c are bounded. We

will consider only divergence form, because divergence form is more natural

for energy-method approaches. The uniformly parabolic condition we require
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is that there must exist a constant A > 0 such that

n∑
i,j=1

aij(x, t)ξiξj ≥ A|ξ|2, ∀x ∈ Ω, ∀t ∈ (0, T ), and ∀ξ ∈ Rn. (4.11)

The bilinear form associated with Lu is defined as

Bu[u, v] =
∫

Ω

 n∑
i,j=1

aij(x, t)(∂xiu)(∂xjv) +
n∑
i=1

bi(x, t)(∂xiu)v + c(x, t)uv

 dx.
(4.12)

So Bθ is the bilinear form corresponding to Lθ, and Bη corresponds to Lη. For

the special case of the cubic nonlinearity model,

Bθ[θ, v] =
∫

Ω
l2(∇θ) · (∇v)dx,

Bη[η, w] =
∫

Ω
L2(∇η) · (∇w)dx,

(4.13)

and there is no explicit t dependence.

To define weak solutions, we need to select an appropriate Sobolev space.

Sobolev spaces are spaces of functions of x alone in which the solutions of the

PDE under consideration are assumed to live at each time instant. The Sobolev

space Wm,p(Ω) is defined as follows:

Wm,p(Ω) =
{
u ∈ Lp(Ω)

∣∣∣∣ the distributional derivatives of u of order ≤ m

are in Lp(Ω)
}
. (4.14)

The Sobolev space Wm,p(Ω) is a Banach space with the norm

||u||Wm,p(Ω) =

 ∑
[α]≤m

||Dαu||pLp(Ω)

1/p

, (4.15)

where α = {α1, ..., αn} is a multiindex, and [α] = α1 + · · ·+ αn.

When p = 2, Wm,2(Ω) is written as Hm(Ω). (This is because Hm(Ω)

turns out to in fact be a Hilbert space.) In particular,

H1(Ω) =
{
u ∈ L2(Ω)|Diu ∈ L

2(Ω), 1 ≤ i ≤ n
}
. (4.16)
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Since we need to define a space of functions in which the solutions of our

PDE live at each time instant, we need to further restrict our Sobolev space

to functions which adhere to the appropriate boundary conditions. There are

three basic types of boundary conditions, which we will consider in parallel:

1. Dirichlet: θ = 0, η = 0 on ∂Ω;

2. Neumann: ∇xθ ·n = 0, ∇xη ·n = 0 on ∂Ω where n is normal to ∂Ω; or

3. periodic boundary conditions.

For Dirichlet boundary conditions, the space H1
0 (Ω) is considered, and it is

defined as the closure of C∞0 (Ω) in H1(Ω) (where C∞0 (Ω) is the space of C∞

functions with compact support). Similarly, for periodic boundary conditions,

we can work in the space H1
per(Ω), defined in the obvious way. The norms for

the Sobolev spaces H1
0 (Ω), H1

per(Ω), etc., are the same as the norm for H1(Ω),

and therefore, we will refer to theH1(Ω)-norm, even though the function spaces

we are actually working with are further restricted by the boundary conditions.

Even though we are used to writing solutions as θ(x, t) and η(x, t), for

purposes of the existence and uniqueness proofs, we will consider θ(t) and η(t)

to be evolving in time as elements of the appropriate Sobolev space.

To have a properly posed initial boundary value problem, we assume the

initial conditions

θ(0) = gθ ∈ L
2(Ω),

η(0) = gη ∈ L
2(Ω).

(4.17)

We also need norms that we can apply to θ(·) and η(·) on any finite time interval
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[0, T ]. These norms are derived from Sobolev space norms; e.g.,

||θ||L2(0,T ;H1(Ω)) =

(∫ T

0
||θ(t)||2H1(Ω)dt

)1/2

. (4.18)

(Technically, the boundary conditions and initial conditions should be thought

of in the sense of trace [48].)

The last concept we need to properly define weak solutions is that of a

negative Sobolev space, which is simply the dual space to the Sobolev space

in which θ(t) and η(t) lie. We denote the negative Sobolev space (to H1(Ω)

restricted by the boundary conditions) by H−1(Ω), and we denote the pairing

by

〈u, v〉 =
∫

Ω
uv dx, (4.19)

for u ∈ H−1(Ω) and v ∈ H1(Ω). The time derivative of θ(t) and of η(t) lie in

H−1(Ω), which we express as

∂tθ ∈ H
−1(Ω), ∂tη ∈ H

−1(Ω) (4.20)

(even though θ(·) and η(·) are thought of as functions of t only).

Finally, let (·, ·) denote the inner product

(u, v) =
∫

Ω
uv dx, (4.21)

for u, v ∈ L2(Ω). We say that the pair of functions θ and η are a weak solution

of the system (4.2) provided

θ, η ∈ L2(0, T ;H1(Ω)) with ∂tθ, ∂tη ∈ L
2(0, T ;H−1(Ω)), (4.22)

θ and η satisfy the appropriate boundary conditions and initial conditions, and

τθ < ∂tθ, v > +Bθ[θ, v; t] = (−fθ(θ) + η, v),

τη < ∂tη, w > +Bη[η, w; t] = (−fη(η)− θ, w)
(4.23)
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for each v, w ∈ H1(Ω) (and satisfying the boundary conditions), and for a.e. t ∈

[0, T ].

4.2.2 Galerkin approximations

The key tools for proving existence of weak solutions are Galerkin ap-

proximations and energy estimates. Let {wk} be a basis for H1(Ω) and an

orthonormal basis for L2(Ω). (Since H1(Ω) ⊂ L2(Ω), an orthonormal basis of

L2(Ω) that is contained in H1(Ω) is a basis for H1(Ω).) The Galerkin approx-

imation consists of projecting the equations down to a space spanned by only

a finite number of these basis functions {wk}.

Define

θm(t) =
m∑
k=1

dmk (t)wk,

ηm(t) =
m∑
k=1

emk (t)wk,

(4.24)

where we would like to be able to determine the coefficients dmk and emk so they

satisfy

dmk (0) = (gθ, wk) =
∫

Ω
gθ(x)wk(x)dx,

emk (0) = (gη, wk) =
∫

Ω
gη(x)wk(x)dx

(4.25)

and

τθ(∂tθm, wk) +Bθ[θm, wk; t] = (−fθ(θm) + ηm, wk),

τη(∂tηm, wk) +Bη[ηm, wk; t] = (−fη(ηm)− θm, wk),
(4.26)

where (·, ·) denotes the usual inner product for L2(Ω). In other words, we

are trying to find functions θm, and ηm which satisfy the projection of the

coupled PDEs onto a finite-dimensional subspace spanned by {wk}mk=1. If we

71



substitute the expressions for θm in terms of dmk and for ηm in terms of emk into

the above equations, we obtain a system of ODEs in the dmk and emk , along

with appropriate initial conditions. To prove the existence of the dmk and emk

for all t ∈ [0, T ], it is sufficient to show that there are no finite escape times

(since the necessary local Lipschitz condition is satisfied) [44]. In particular,

if we can show that there is no finite escape time for either θm or ηm, then it

follows from the fact that {wk} is a basis that there can be no finite escape

time for any of the dmk or emk .

4.2.3 Inequality for uniformly parabolic bilinear forms

The requirement that the parabolic operator be uniformly parabolic is

needed for deriving an inequality that is used for determining energy estimates

for θm and ηm. From the uniformly parabolic condition we have, for some

A > 0,

A|ξ|2 ≤
n∑

i,j=1

aij(x, t)ξiξj, ∀x ∈ Ω, ∀t ∈ (0, T ), and ∀ξ ∈ Rn, (4.27)

from which it follows that

A|∇u|2 ≤
n∑

i,j=1

aij(x, t)(∂xiu)(∂xju),

A
∫

Ω
|∇u|2dx ≤

∫
Ω

n∑
i,j=1

aij(x, t)(∂xiu)(∂xju)dx

= B[u, u; t]−
∫

Ω

[
n∑
i=1

bi(x, t)(∂xiu)u+ c(x, t)u2

]
dx

≤ B[u, u; t] +
n∑
i=1

||bi||L∞(Ω×(0,T ))

∫
Ω
|∇u||u|dx

+||c||L∞(Ω×(0,T ))

∫
Ω
u2dx. (4.28)

Cauchy’s inequality with ε implies

∫
Ω
|∇u||u|dx ≤ ε

∫
Ω
|∇u|2dx +

1

4ε

∫
Ω
u2dx. (4.29)
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Therefore, we obtain

A
∫

Ω
|∇u|2dx ≤ B[u, u; t] + ε

n∑
i=1

||bi||L∞(Ω×(0,T ))

∫
Ω
|∇u|2dx

+

(
1

4ε

n∑
i=1

||bi||L∞(Ω×(0,T )) + ||c||L∞(Ω×(0,T ))

)∫
Ω
u2dx.

(4.30)

Now choosing ε such that

ε
n∑
i=1

||bi||L∞(Ω×(0,T )) <
A

2
, (4.31)

we obtain

β
∫

Ω
|∇u|2dx ≤ B[u, u; t] + γ

∫
Ω
u2dx, (4.32)

where β = A/2 > 0 and γ is a constant. In terms of norms, this expression

can be rewritten as

B[u, u; t] ≥ β||∇u||2L2(Ω) − γ||u||
2
L2(Ω). (4.33)

4.2.4 L2(0, T ;L2(Ω)) and L∞(0, T ;L2(Ω)) bounds for θm and ηm

Starting with (4.26), multiplying the first equation through by dmk and

summing from k = 1 to m while multiplying the second equation through by

emk and summing from k = 1 to m, we obtain

τθ

∫
Ω

(∂tθm)θmdx +Bθ[θm, θm; t] = −
∫

Ω
fθ(θm)θmdx +

∫
Ω
ηmθmdx,

τη

∫
Ω

(∂tηm)ηmdx +Bη[ηm, ηm; t] = −
∫

Ω
fη(ηm)ηmdx−

∫
Ω
θmηmdx.

(4.34)

Summing these two equations gives

τθ

∫
Ω

(∂tθm)θmdx + τη

∫
Ω

(∂tηm)ηmdx +Bθ[θm, θm; t] +Bη[ηm, ηm; t]

+
∫

Ω
fθ(θm)θmdx +

∫
Ω
fη(ηm)ηmdx = 0.

(4.35)
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(Exactly the same expression is obtained for the general parabolic active

transmission-line model.) The first two terms can be rewritten as

τθ

∫
Ω

(∂tθm)θmdx =
1

2
τθ∂t

∫
Ω
θ2
mdx =

1

2
τθ∂t||θm||

2
L2(Ω)

τη

∫
Ω

(∂tηm)ηmdx =
1

2
τη∂t

∫
Ω
η2
mdx =

1

2
τη∂t||ηm||

2
L2(Ω).

(4.36)

For the third and fourth terms, we can use the inequality for uniformly parabolic

bilinear forms,

Bθ[θm, θm; t] ≥ βθ||∇θm||
2
L2(Ω) − γθ||θm||

2
L2(Ω),

Bη[ηm, ηm; t] ≥ βη||∇ηm||
2
L2(Ω) − γη||ηm||

2
L2(Ω),

(4.37)

where βθ, γθ, βη, and γη are constants, with βθ > 0 and βη > 0.

For the fifth and sixth terms, we can use the fact that fθ(θm) and fη(ηm)

are odd-order polynomials with positive leading coefficients to obtain bounds.

Suppose the leading term of fθ(θm) is aθθ
2pθ−1
m and the leading term of fη(ηm)

is aηη
2pη−1
m . Then there exist positive constants cθ and cη such that

fθ(θm)θm ≥
1

2
aθθ

2pθ
m − cθ,

fη(ηm)ηm ≥
1

2
aηη

2pη
m − cη

(4.38)

so that ∫
Ω
fθ(θm)θmdx ≥

1

2
aθ

∫
Ω
θ2pθ
m dx− cθ|Ω|,

∫
Ω
fη(ηm)ηmdx ≥

1

2
aη

∫
Ω
η2pη
m dx− cη|Ω|,

(4.39)

where

|Ω| =
∫

Ω
dx. (4.40)

Next, we use Holder’s inequality,

∫
Ω
|uv|dx ≤ ||u||Lp(Ω)||v||Lq(Ω), (4.41)
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and Young’s inequality,

ab ≤
ap

p
+
bq

q
, (4.42)

where p, q > 1 and 1/p+ 1/q = 1, to obtain

∫
Ω
θ2
mdx ≤

(∫
Ω
θ2pθ
m dx

)1/pθ

|Ω|1/qθ

≤
1

pθ

∫
Ω
θ2pθ
m dx +

1

qθ
|Ω|,∫

Ω
θ2pθ
m dx ≥ pθ

∫
Ω
θ2
mdx−

pθ

qθ
|Ω|,∫

Ω
fθ(θm)θmdx ≥

1

2
aθpθ

∫
Ω
θ2
mdx−

1

2
aθ
pθ
qθ
|Ω| − cθ|Ω|

=
1

2
aθpθ||θm||

2
L2(Ω) − c

′
θ|Ω|,∫

Ω
fη(ηm)ηmdx ≥

1

2
aηpη||ηm||

2
L2(Ω) − c

′
η|Ω|, (4.43)

where 1/pθ + 1/qθ = 1, 1/pη + 1/qη = 1, c′θ > 0, and c′η > 0.

Combining all of these inequalities, we obtain

1

2
τθ∂t||θm||

2
L2(Ω) +

1

2
τη∂t||ηm||

2
L2(Ω) + βθ||∇θm||

2
L2(Ω) − γθ||θm||

2
L2(Ω)

+βη||∇ηm||
2
L2(Ω) − γη||ηm||

2
L2(Ω) +

1

2
aθpθ||θm||

2
L2(Ω)

−c′θ|Ω|+
1

2
aηpη||ηm||

2
L2(Ω) − c

′
η|Ω| ≤ 0.

(4.44)

From this inequality, it follows that

∂t
[
τθ||θm||

2
L2(Ω) + τη||ηm||

2
L2(Ω)

]
≤ c1

[
τθ||θm||

2
L2(Ω) + τη||ηm||

2
L2(Ω)

]
+ c2, (4.45)

for some constants c1 and c2.

Now we can apply the usual Gronwall lemma [47]: let g, h, y, and dy/dt

be locally integrable on (t0,∞) satisfying

dy

dt
≤ gy + h for t ≥ t0. (4.46)
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Then

y(t) ≤ y(t0)e
∫ t
t0
g(τ)dτ

+
∫ t

t0

h(s)e−
∫ s
t
g(τ)dτds. (4.47)

Applied to the problem at hand, the usual Gronwall lemma, with

y = τθ||θm||
2
L2(Ω) + τη||ηm||

2
L2(Ω),

g = c1, (4.48)

h = c2,

implies

y(t) ≤ y(0)ec1t +
∫ t

0
c2ec1(t−s)ds

= y(0)ec1t − c2ec1t
(

e−c1s

c1

∣∣∣∣t
0

)

= y(0)ec1t +
c2

c1
(ec1t − 1). (4.49)

Therefore, for any T > 0,

sup
0≤t≤T

[
τθ||θm||

2
L2(Ω) + τη||ηm||

2
L2(Ω)

]
≤ ρ2

0, (4.50)

for some ρ0 ∈ R. It then follows that for any T > 0, there exist constants ρmaxθ

and ρmaxη such that

sup
0≤t≤T

||θm||L2(Ω) < ρmaxθ ,

sup
0≤t≤T

||ηm||L2(Ω) < ρmaxη .
(4.51)

Furthermore, ρmaxθ and ρmaxη depend only on the norm of the initial data and

on T . We can also integrate the bound on y(t) from 0 to T to obtain∫ T

0
y(t)dt ≤

∫ T

0

[
y(0)ec1t +

c2

c1

(ec1t − 1)
]
dt = ρ2

1, (4.52)

for some ρ1 ∈ R. This lead to the bounds

||θm||L2(0,T ;L2(Ω)) < ρθ,

||ηm||L2(0,T ;L2(Ω)) < ρη,
(4.53)
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where ρθ and ρη are constants depending only on the initial data and on T .

Thus,

θm ∈ L2(0, T ;L2(Ω)) ∩ L∞(0, T ;L2(Ω)),

ηm ∈ L2(0, T ;L2(Ω)) ∩ L∞(0, T ;L2(Ω)),
(4.54)

with bounds that depend only on the norm of the initial data and on T .

Because of the bounds we have just exhibited for θm and ηm, we can

conclude that there are no finite escape times for the dmk or emk . Hence, solutions

dmk and emk to the system of ODEs (4.26) exist and are unique. Therefore, θm

and ηm also exist and are unique solutions for the finite-dimensional projected

system. To complete the existence proof, we need to show that a subsequence

of these approximate solutions θm and ηm converges to a weak solution of our

original system of PDEs. However, this first requires another energy estimate

on θm and ηm, as well as an energy estimate on ∂tθm and ∂tηm.

4.2.5 L2(0, T ;L2(Ω)) bounds for ∇θm and ∇ηm

From inequality (4.44), it follows that

1

2
τθ∂t||θm||

2
L2(Ω) +

1

2
τη∂t||ηm||

2
L2(Ω) + βθ||∇θm||

2
L2(Ω) + βη||∇ηm||

2
L2(Ω)

≤ c′′θ ||θm||
2
L2(Ω) + c′′η||ηm||

2
L2(Ω) + c′′|Ω|, (4.55)

where c′′θ , c
′′
η, and c′′ are constants, and we recall that βθ > 0 and βη > 0.

Integrating both sides from 0 to T , we obtain

1

2
τθ||θm(T )||2L2(Ω) −

1

2
τθ||θm(0)||2L2(Ω) +

1

2
τη||ηm(T )||2L2(Ω) −

1

2
τη||ηm(0)||2L2(Ω)

+βθ||∇θm||
2
L2(0,T ;L2(Ω)) + βη||∇ηm||

2
L2(0,T ;L2(Ω))

≤ c′′θ ||θm||
2
L2(0,T ;L2(Ω)) + c′′η||ηm||

2
L2(0,T ;L2(Ω)) + c′′|Ω|T

≤ c′′θρ
2
θ + c′′ηρ

2
η + c′′|Ω|T. (4.56)
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It then follows that

βθ||∇θm||
2
L2(0,T ;L2(Ω)) + βη||∇ηm||

2
L2(0,T ;L2(Ω))

≤ c′′θρ
2
θ + c′′ηρ

2
η + c′′|Ω|T +

1

2
τθ||θm(0)||2L2(Ω) +

1

2
τη||ηm(0)||2L2(Ω)

= ρ2
2, (4.57)

where ρ2 is a constant depending only on T and on the norm of the initial

data. Thus,

∇θm ∈ L2(0, T ;L2(Ω)),

∇ηm ∈ L2(0, T ;L2(Ω)),
(4.58)

with bounds that depend only on the norm of the initial data and on T .

4.2.6 L2pθ(0, T ;L2pθ(Ω)) and L2pη(0, T ;L2pη(Ω)) bounds for θm and

ηm

Returning to (4.35), the first through fourth terms can be treated the

same as before using (4.36) and (4.37). However, for the first and sixth terms,

we use (4.39) instead of (4.43), to obtain

1

2
τθ∂t||θm||

2
L2(Ω) +

1

2
τη∂t||ηm||

2
L2(Ω) + βθ||∇θm||

2
L2(Ω) − γθ||θm||

2
L2(Ω)

+βη||∇ηm||
2
L2(Ω) − γη||ηm||

2
L2(Ω) +

1

2
aθ||θm||

2pθ
L2pθ (Ω)

− cθ|Ω|

+
1

2
aη||ηm||

2pη
L2pη (Ω)

− cη|Ω| ≤ 0,

(4.59)

from which it follows that

1

2
τθ∂t||θm||

2
L2(Ω) +

1

2
τη∂t||ηm||

2
L2(Ω) +

1

2
aθ||θm||

2pθ
L2pθ (Ω)

+
1

2
aη||ηm||

2pη
L2pη (Ω)

≤ γθ||θm||
2
L2(Ω) + γη||ηm||

2
L2(Ω) + (cθ + cη)|Ω|. (4.60)

Integrating both sides from 0 to T then gives

1

2
τθ||θm(T )||2L2(Ω) −

1

2
τθ||θm(0)||2L2(Ω) +

1

2
τη||ηm(T )||2L2(Ω) −

1

2
τη||ηm(0)||2L2(Ω)
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+
1

2
aθ||θm||

2pθ
L2pθ (0,T ;L2pθ (Ω))

+
1

2
aη||ηm||

2pη
L2pη (0,T ;L2pη (Ω))

≤ γθ||θm||
2
L2(0,T ;L2(Ω)) + γη||ηm||

2
L2(0,T ;L2(Ω)) + (cθ + cη)|Ω|T,

(4.61)

from which it follows that

1

2
aθ||θm||

2pθ
L2pθ (0,T ;L2pθ (Ω))

+
1

2
aη||ηm||

2pη
L2pη (0,T ;L2pη (Ω))

≤ γθ||θm||
2
L2(0,T ;L2(Ω)) + γη||ηm||

2
L2(0,T ;L2(Ω)) + (cθ + cη)|Ω|T

+
1

2
τθ||θm(0)||2L2(Ω) +

1

2
τη||ηm(0)||2L2(Ω)

≤ γθρ
2
θ + γηρ

2
η + (cθ + cη)|Ω|T +

1

2
τθ||θm(0)||2L2(Ω) +

1

2
τη||ηm(0)||2L2(Ω)

≤ ρ2
3, (4.62)

for some constant ρ3 depending only on T and on the norm of the initial data.

Thus,

θm ∈ L2pθ(0, T ;L2pθ(Ω)),

ηm ∈ L2pη(0, T ;L2pη(Ω))
(4.63)

with bounds that depend only on the norm of the initial data and on T .

To summarize, the energy estimates we have proved so far show that θm

and ηm are bounded sequences in their respective Hilbert spaces, namely

θm ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L2pθ(0, T ;L2pθ(Ω)),

ηm ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L2pη(0, T ;L2pη(Ω)).
(4.64)

Later in the existence proof we will define weak convergence and use the fact

that a bounded sequence in a Hilbert space contains a weakly convergent

subsequence. But first we also need energy estimates for ∂tθm and ∂tηm.

4.2.7 L2(0, T ;H−1(Ω)) bounds for ∂tθm and ∂tηm

We will only do the calculation for the estimate for ∂tθm, because the
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corresponding calculation for the estimate for ∂tηm is identical. The bound we

are trying to obtain (for ∂tθ) is∫ T

0
|(∂tθm, v)|dt ≤ constant, ∀v ∈ H1(Ω) ∩ L2pθ(Ω). (4.65)

Observe that the space H1(Ω)∩L2pθ(Ω) is the space of time-independent func-

tions belonging to the same space as θm, namely

v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L2pθ(0, T ;L2pθ(Ω)), (4.66)

but v does not depend on t. (Whenever we write v ∈ H1(Ω), it is understood

that in addition v satisfies the boundary conditions.)

An alternative approach to proving existence would have been to ignore

the L2pθ(0, T ;L2pθ(Ω)) bound and then prove a bound like (4.65) ∀v ∈ H1(Ω).

In fact, for the bounded nonlinearity model (4.7), that is exactly the ap-

proach we must take. For the generalized polynomial nonlinearity model,

the results obtained using the L2pθ(0, T ;L2pθ(Ω)) bound are stronger than

those that would be obtained without it. (Note that since Ω is bounded,

L2pθ(Ω) ⊂ L2(Ω).)

So fix v ∈ H1(Ω) with ||v||H1(Ω) ≤ 1 and ||v||L2pθ (Ω) ≤ 1. We can decom-

pose v as

v = v1 + v2, (4.67)

where

v1 ∈ span{wk}
m
k=1,

(v2, wk) = 0 for k = 1, ...,m.
(4.68)

The {wk} are a basis for H1(Ω) and L2(Ω) so

||v1||H1(Ω) ≤ ||v||H1(Ω) ≤ 1,

||v1||L2pθ (Ω) ≤ ||v||L2pθ (Ω) ≤ 1.
(4.69)
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Therefore, from (4.26), it follows that

τθ(∂tθm, v1) +Bθ[θm, v1; t] = (−fθ(θm) + ηm, v1), (4.70)

so

τθ(∂tθm, v) = τθ(∂tθm, v1)

= (−fθ(θm) + ηm, v1)−Bθ[θm, v1; t]

= (−fθ(θm), v1) + (ηm, v1)−Bθ[θm, v1; t]. (4.71)

Therefore,

τθ

∫ T

0
|(∂tθm, v)|dt ≤

∫ T

0
|(fθ(θm), v1)|dt+

∫ T

0
|(ηm, v1)|dt+

∫ T

0
|Bθ[θm, v1; t]|dt

(4.72)

For the last term, we need to derive a bound involving the bilinear form

(which does not, incidentally, require the uniformly parabolic condition):

|B[u, v; t]| ≤
n∑

i,j=1

||aij||L∞(Ω×(0,T ))

∫
Ω
|∇u||∇v|dx

+
n∑
i=1

||bi||L∞(Ω×(0,T ))

∫
Ω
|∇u||v|dx + ||c||L∞(Ω×(0,T ))

∫
Ω
|u||v|dx

≤ α||u||H1(Ω)||v||H1(Ω), (4.73)

for some constant α. Therefore, for the last term of (4.72), we have the bound

|Bθ[θm, v1; t]| ≤ αθ||θm||H1(Ω)||v1||H1(Ω)

≤ αθ||θm||H1(Ω), (4.74)

for some αθ > 0, so that∫ T

0
|Bθ[θm, v1; t]|dt ≤ αθ||θm||L2(0,T ;H1(Ω)). (4.75)

For the middle term of (4.72), we have the bound

|(ηm, v1)| ≤ ||ηm||L2(Ω)||v1||L2(Ω) ≤ ||ηm||L2(Ω), (4.76)
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so that ∫ T

0
|(ηm, v1)|dt ≤ ||ηm||L2(0,T ;L2(Ω)). (4.77)

(For the general parabolic active transmission line, the term −(∂xηm, v1) ap-

pears in equation (4.71) in place of (ηm, v1). Therefore, we obtain the bound∫ T

0
|(∂xηm, v1)|dt ≤ ||ηm||L2(0,T ;H1(Ω)), (4.78)

instead of (4.77).)

For the first term of (4.72), we have to do a little more work. Since fθ(·)

is an odd-order polynomial with positive leading coefficient, we have the upper

bound

|fθ(θm)| ≤
3

2
aθ|θm|

2pθ−1 + bθ, (4.79)

where aθ > 0 is the leading coefficient of fθ(·) and bθ > 0 is a constant. Then∫ T

0
|(fθ(θm), v1)|dt =

∫ T

0

∣∣∣∣∫
Ω
fθ(θm)v1dx

∣∣∣∣ dt
≤

∫ T

0

∫
Ω
|fθ(θm)||v1|dxdt

≤
∫ T

0

∫
Ω

3

2
aθ|θm|

2pθ−1|v1|dxdt+
∫ T

0

∫
Ω
bθ|v1|dxdt.

(4.80)

Holder’s inequality applied to the second term on the right implies∫ T

0
bθ

∫
Ω
|v1|dxdt ≤

∫ T

0
bθ

(∫
Ω
v2

1dx
)1/2

|Ω|1/2dt

≤
∫ T

0
bθ|Ω|

1/2dt

= bθ|Ω|
1/2T = constant. (4.81)

Holder’s inequality applied twice to the first term implies

3

2
aθ

∫ T

0

∫
Ω
|θ2pθ−1
m ||v1|dxdt

≤
3

2
aθ

∫ T

0

(∫
Ω

(
|θm|

2pθ−1
) 2pθ

2pθ−1 dx

) 2pθ−1

2pθ
(∫

Ω
|v1|

2pθdx
) 1

2pθ
dt
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=
3

2
aθ

∫ T

0

(∫
Ω
|θm|

2pθdx
) 2pθ−1

2pθ

(∫
Ω
|v1|

2pθdx
) 1

2pθ
dt

≤
3

2
aθ

∫ T

0

(∫
Ω
|θm|

2pθdx
) 2pθ−1

2pθ

2pθ
2pθ−1

dt


2pθ−1

2pθ
[∫ T

0

(∫
Ω
|v1|

2pθdx
) 1

2pθ
2pθ

dt

] 1
2pθ

=
3

2
aθ

[∫ T

0

(∫
Ω
|θm|

2pθdx
)
dt

] 2pθ−1

2pθ

[∫ T

0

(∫
Ω
|v1|

2pθdx
)
dt

] 1
2pθ

≤
3

2
aθT

1
2pθ

(
||θm||L2pθ (0,T ;L2pθ (Ω))

)2pθ−1
. (4.82)

Thus, ∫ T

0
|(fθ(θm), v)|dt ≤ ρ′θ, ∀v ∈ H

1(Ω) ∩ L2pθ(Ω), (4.83)

where ρ′θ is a constant depending only on T and the norm of the initial data.

(By a similar calculation, we can also deduce that

∫ T

0
|(fη(ηm), v)|dt ≤ ρ′η, ∀v ∈ H

1(Ω) ∩ L2pη(Ω), (4.84)

where ρ′η is a constant depending only on T and on the norm of the initial

data.)

Now, θm lies in the Hilbert space

L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L2pθ(0, T ;L2pθ(Ω)),

with inner product

((u, v)) =
∫ T

0

∫
Ω
uv dx dt, ∀u, v ∈ L2(0, T ;H1(Ω)), (4.85)

and ∂tθm lies in the dual space to this Hilbert space. Since by the Riesz

representation theorem, there is a canonical isomorphism between any Hilbert

space and its dual, the dual space of

L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L2pθ(0, T ;L2pθ(Ω))
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must be smaller than L2(0, T ;H−1(Ω)). The dual space to L2pθ(0, T ;L2pθ(Ω))

can be deduced by appealing to Holder’s inequality:∫ T

0
< u, v > dt =

∫ T

0

∫
Ω
uv dx dt

≤
∫ T

0

(∫
Ω
|u|pdx

)1/p (∫
Ω
|v|qdx

)1/q

dt

≤

[∫ T

0

(∫
Ω
|u|pdx

) 1
p
·p

dt

]1/p [∫ T

0

(∫
Ω
|v|qdx

)1
q
·q

dt

]1/q

=

(∫ T

0

∫
Ω
|u|pdxdt

)1/p (∫ T

0

∫
Ω
|v|qdxdt

)1/q

= ||u||Lp(0,T ;Lp(Ω))||v||Lq(0,T ;Lq(Ω)), (4.86)

so that if v ∈ Lp(0, T ;Lp(Ω)), then we need u ∈ Lq(0, T ;Lq(Ω)) to insure the

existence of the inner product (where 1/p+ 1/q = 1). Hence,

∂tθm ∈ L
2(0, T ;H−1(Ω)) ∩ Lqθ(0, T ;Lqθ(Ω)),

1

2pθ
+

1

qθ
= 1. (4.87)

Now we can turn to what is meant by weak convergence. The precise

definition applies to Banach spaces, but since we are dealing with Hilbert

spaces, we can restrict the definition to the Hilbert space setting. In this

context, θm converges weakly to θ means∫ T

0

∫
Ω
θmv dx dt →

∫ T

0

∫
Ω
θv dx dt,

∀v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L2pθ(0, T ;L2pθ(Ω)). (4.88)

Also, ∂tθm converges weakly to φ means∫ T

0

∫
Ω
∂tθmv dx dt →

∫ T

0

∫
Ω
φv dx dt,

∀v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L2pθ(0, T ;L2pθ(Ω)). (4.89)

Although these two statements appear identical, they have slightly different

interpretations because θm and ∂tθm lie in different spaces (∂tθm lies in the

dual space to θm).
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We can now formulate more precisely the definition of a weak solution

to the general polynomial-nonlinearity model. Functions

θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L2pθ(0, T ;L2pθ(Ω)),

η ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L2pη(0, T ;L2pη(Ω))

with

∂tθ ∈ L2(0, T ;H−1(Ω)) ∩ Lqθ(0, T ;Lqθ(Ω)),
1

2pθ
+

1

qθ
= 1,

∂tη ∈ L2(0, T ;H−1(Ω)) ∩ Lqη(0, T ;Lqη(Ω)),
1

2pη
+

1

qη
= 1

are a weak solution of the PDE system (4.2) provided θ and η satisfy the

boundary conditions and initial conditions, and

τθ < ∂tθ, v > +Bθ[θ, v; t] = (−fθ(θ) + η, v),

τη < ∂tη, w > +Bη[η, w; t] = (−fη(η)− θ, w)
(4.90)

for each

v ∈ H1(Ω) ∩ L2pθ(Ω),

w ∈ H1(Ω) ∩ L2pη(Ω)

(with v and w also satisfying the boundary conditions), and for a.e. t ∈ [0, T ].

4.2.8 Convergence lemma

Before we can show the existence of a weak solution in the sense of the

definition given in the last subsection, we need to prove the following lemma.

Lemma 4.1 Assume

θm converges weakly to θ in L2(0, T ;H1(Ω)) ∩ L2pθ(0, T ;L2pθ(Ω)),

∂tθm converges weakly to φ in L2(0, T ;H−1(Ω)) ∩ Lqθ(0, T ;Lqθ(Ω)).
(4.91)

Then

φ = ∂tθ. (4.92)

85



Proof: Let

ρ ∈ C1
c (0, T ) (C1 functions with compact support in Ω defined on (0, T )),

w ∈ H1(Ω) ∩ L2pθ(Ω). (4.93)

Then

0 = −
∫ T

0
< ∂tθm, ρw > dt+

∫ T

0
< ∂tθm, ρw > dt

=
∫ T

0
< θm, (∂tρ)w > dt+

∫ T

0
< ∂tθm, ρw > dt, (4.94)

using integration by parts. But weak convergence of θm to θ and ∂tθm to φ

then implies

0 =
∫ T

0
< θ, (∂tρ)w > dt+

∫ T

0
< φ, ρw > dt

= −
∫ T

0
< ∂tθ, ρw > dt+

∫ T

0
< φ, ρw > dt

=
∫ T

0
< φ− ∂tθ, ρw > dt, (4.95)

where again we have used integration by parts. But since ρ and w were arbi-

trary,

< φ− ∂tθ, w >= 0, ∀w ∈ H1(Ω) ∩ L2pθ(Ω). (4.96)

Hence, φ = ∂tθ. 2

4.2.9 Existence proof

Lemma 4.2 There exists a weak solution (as defined in subsection 4.2.7) for

the general polynomial-nonlinearity model (4.2).

Proof: We have already shown that
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{θm} is a bounded sequence in

L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L2pθ(0, T ;L2pθ(Ω)),

{∂tθm} is a bounded sequence in L2(0, T ;H−1(Ω)) ∩ Lqθ(0, T ;Lqθ(Ω)),

{ηm} is a bounded sequence in

L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L2pη(0, T ;L2pη(Ω)),

{∂tηm} is a bounded sequence in L2(0, T ;H−1(Ω)) ∩ Lqη(0, T ;Lqη(Ω)).

(4.97)

Because these are all bounded sequences in Hilbert spaces, they contain weakly

convergent subsequences [46]. The lemma proved in the previous subsection

can therefore be invoked to conclude that

{θmk} converges weakly to

θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L2pθ(0, T ;L2pθ(Ω)),

{∂tθmk} converges weakly to ∂tθ ∈ L
2(0, T ;H−1(Ω)) ∩ Lqθ(0, T ;Lqθ(Ω)),

{ηmk} converges weakly to

η ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L2pη(0, T ;L2pη(Ω)),

{∂tηmk} converges weakly to ∂tη ∈ L
2(0, T ;H−1(Ω)) ∩ Lqη(0, T ;Lqη(Ω)),

(4.98)

where by taking subsequences of subsequences we can assume without loss of

generality that the subsequence indices are the same for all four subsequences.

We thus have a candidate for the weak solution.

Now we need to verify that our candidate weak solution is in fact a weak

solution. As usual, we will only consider the calculations for the θ equation,

since the calculations for the η equation are identical. Fix an integer N and
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let

v ∈ L2(0, T ;H1(Ω)) ∩ L2pθ(0, T ;L2pθ(Ω)) (4.99)

have the form

v(t) =
N∑
k=1

vk(t)wk, (4.100)

where the vk(t) are given functions of t only. Let m ≥ N , multiply

τθ(∂tθm, wk) +Bθ[θm, wk; t] = (−fθ(θm) + ηm, wk), (4.101)

equation (4.26), through by vk(t), sum from k = 1 to N , and integrate with

respect to t to obtain

∫ T

0
(τθ < ∂tθm, v > +Bθ[θm, v; t])dt =

∫ T

0
(−fθ(θm) + ηm, v)dt. (4.102)

Considering subsequences and passing to weak limits then gives

∫ T

0
(τθ < ∂tθ, v > +Bθ[θ, v; t])dt =

∫ T

0
(−fθ(θ) + η, v)dt. (4.103)

This last equality then holds for all v ∈ L2(0, T ;H1(Ω)) ∩ L2pθ(0, T ;L2pθ(Ω))

because functions of the form

v(t) =
N∑
k=1

vk(t)wk

are dense in this space. Hence,

τθ < ∂tθ, v > +Bθ[θ, v; t] = (−fθ(θ) + η, v), ∀v ∈ H1(Ω) ∩ L2pθ(Ω), (4.104)

and for a.e. t ∈ [0, T ]. Similarly,

τη < ∂tη, w > +Bη[η, w; t] = (−fη(η)−θ, w), ∀w ∈ H1(Ω)∩L2pη(Ω), (4.105)

and for a.e. t ∈ [0, T ].

Finally, we need to verify that our candidate weak solution satisfies the

initial conditions θ(0) = gθ and η(0) = gη. Assume that v, as defined above,
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is also C1 and satisifies v(T ) = 0. Then from (4.103), it follows that

−τθ(θ(0), v(0)) +
∫ T

0
(−τθ < ∂tv, θ > +Bθ[θ, v; t])dt =

∫ T

0
(−fθ(θ) + η, v)dt.

(4.106)

But also, from (4.102), it follows that

−τθ(θm(0), v(0))+
∫ T

0
(−τθ < ∂tv, θm > +Bθ[θm, v; t])dt =

∫ T

0
(−fθ(θm)+ηm, v)dt,

(4.107)

which in passing to limits (with appropriate subsequences) gives

−τθ(gθ, v(0)) +
∫ T

0
(−τθ < ∂tv, θ > +Bθ[θ, v; t])dt =

∫ T

0
(−fθ(θ) + η, v)dt,

(4.108)

since θmk(0)→ gθ in L2(Ω). Thus,

(θ(0), v(0)) = (gθ, v(0)), (4.109)

but because v(0) is arbitrary, we conclude that θ(0) = gθ. 2

4.2.10 Uniqueness proof

Lemma 4.3 The weak solution for the general polynomial-nonlinearity model

(4.2) is unique.

Proof: Suppose there are two weak solutions, (θ1, η1) and (θ2, η2). Then

τθ < ∂tθ1, v > +Bθ[θ1, v; t] = (−fθ(θ1) + η1, v), θ1(0) = gθ,

τη < ∂tη1, w > +Bη[η1, w; t] = (−fη(η1)− θ1, w), η1(0) = gη,

τθ < ∂tθ2, v > +Bθ[θ2, v; t] = (−fθ(θ2) + η2, v), θ2(0) = gθ,

τη < ∂tη2, w > +Bη[η2, w; t] = (−fη(η2)− θ2, w), η2(0) = gη,

∀v ∈ H1(Ω) ∩ L2pθ(Ω), ∀w ∈ H1(Ω) ∩ L2pη(Ω).

(4.110)
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Letting v = θ2 − θ1 and w = η2 − η1, and using the bilinearity of Bθ and Bη,

we obtain

τθ < ∂t(θ2 − θ1), (θ2 − θ1) > +Bθ[θ2 − θ1, θ2 − θ1; t]

= (−(fθ(θ2)− fθ(θ1)) + (η2 − η1), θ2 − θ1),

τη < ∂t(η2 − η1), (η2 − η1) > +Bη[η2 − η1, η2 − η1; t]

= (−(fη(η2)− fη(η1))− (θ2 − θ1), η2 − η1),

(θ2 − θ1)(0) = 0,

(η2 − η1)(0) = 0.

(4.111)

Letting δθ = θ2 − θ1 and δη = η2 − η1, the above equations become

τθ < ∂tδθ, δθ > +Bθ[δθ, δθ; t] = (−(fθ(θ2)− fθ(θ1)) + δη, δθ),

τη < ∂tδη, δη > +Bη[δη, δη; t] = (−(fη(η2)− fη(η1))− δθ, δη),

δθ(0) = 0,

δη(0) = 0.

(4.112)

Adding the δθ and δη equations gives

1

2
∂t
[
τθ||δθ||

2
L2(Ω) + τη||δη||

2
L2(Ω)

]
+Bθ[δθ, δθ; t] +Bη[δη, δη; t]

= (−(fθ(θ2)− fθ(θ1)), δθ) + (−(fη(η2)− fη(η1)), δη). (4.113)

To handle the bilinear terms, we can use the inequalities (4.37),

Bθ[δθ, δθ; t] ≥ βθ||∇δθ||
2
L2(Ω) − γθ||δθ||

2
L2(Ω),

Bη[δη, δη; t] ≥ βη||∇δη||
2
L2(Ω) − γη||δη||

2
L2(Ω),

(4.114)

where βθ, γθ, βη, and γη are constants, with βθ > 0 and βη > 0. In fact, for

our purposes here, we can simplify these inequalities to

Bθ[δθ, δθ; t] ≥ −γθ||δθ||
2
L2(Ω),

Bη[δη, δη; t] ≥ −γη||δη||
2
L2(Ω),

(4.115)
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leading to

1

2
∂t
[
τθ||δθ||

2
L2(Ω) + τη||δη||

2
L2(Ω)

]
≤ γθ||δθ||

2
L2(Ω) + γη||δη||

2
L2(Ω) + (−(fθ(θ2)− fθ(θ1)), δθ)

+(−(fη(η2)− fη(η1)), δη). (4.116)

To handle the last two terms on the right, we need to use some simple

facts about polynomials. Also, we will only consider the θ term, because the η

term is handled identically. The first fact is that any term of the form θn2 − θ
n
1

can be factored as follows:

θn2 − θ
n
1 = (θ2 − θ1)(θn−1

2 + θn−2
2 θ1 + θn−2

2 θ2
1 + · · ·+ θ2θ

n−2
1 + θn−1

1 ). (4.117)

Furthermore, for n odd and θ1 6= θ2,

(θn−1
2 + θn−2

2 θ1 + θn−2
2 θ2

1 + · · ·+ θ2θ
n−2
1 + θn−1

1 ) > 0. (4.118)

Since fθ(·) is odd-order with a positive leading coefficient, we can write

fθ(θ) = aθθ
2pθ−1 + a2pθ−2θ

2pθ−2 + · · ·+ a1θ + a0,

fθ(θ2)− fθ(θ1) = aθ(θ
2pθ−1
2 − θ2pθ−1

1 ) + a2pθ−2(θ2pθ−2
2 − θ2pθ−2

1 )

+ · · ·+ a1(θ2 − θ1)

= aθ(θ2 − θ1)(θ2pθ−2
2 + θ2pθ−3

2 θ1 + · · ·+ θ2pθ−2
1 )

+a2pθ−2(θ2 − θ1)(θ2pθ−3
2 + θ2pθ−4

2 θ1 + · · ·+ θ2pθ−3
1 )

+ · · ·+ a1(θ2 − θ1). (4.119)

Defining

hθn(θ1, θ2) = θn−1
2 + θn−2

2 θ1 + θn−3
2 θ2

1 + · · ·+ θ2θ
n−2
1 + θn−1

1 , (4.120)

then hθ(2pθ−1)(θ1, θ2) ≥ 0, and we have the bounds

|hθn(θ1, θ2)| ≤ cn +
1

2pθ
hθ(2pθ−1)(θ1, θ2), n = 2, ..., 2pθ − 2, ∀θ1, θ2, (4.121)
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where cn > 0, n = 2, ..., 2pθ − 2. Therefore,

(−(fθ(θ2)− fθ(θ1)), δθ)

= −aθ

∫
Ω
δθ2hθ(2pθ−1)(θ1, θ2)dx− a2pθ−2

∫
Ω
δθ2hθ(2pθ−2)(θ1, θ2)dx

+ · · ·+ a1

∫
Ω
δθ2dx

≤ −aθ
3

2pθ

∫
Ω
δθ2hθ(2pθ−1)(θ1, θ2)dx + c(2pθ−2)

∫
Ω
δθ2dx

+ · · ·+ c2

∫
Ω
δθ2dx + a1

∫
Ω
δθ2dx

≤ (c(2pθ−2) + · · ·+ c2 + a1)||δθ||2L2(Ω)

= c′θ||δθ||
2
L2(Ω), (4.122)

where c′θ is a constant. Similarly,

(−(fη(η2)− fη(η1)), δη) ≤ c′η||δη||
2
L2(Ω), (4.123)

where c′η is a constant. Therefore we have

1

2
∂t
[
τθ||δθ||

2
L2(Ω) + τη||δη||

2
L2(Ω)

]
≤ (γθ + c′θ)||δθ||

2
L2(Ω) + (γη + c′η)||δη||

2
L2(Ω)

≤ c′′
[
τθ||δθ||

2
L2(Ω) + τη||δη||

2
L2(Ω)

]
, (4.124)

for some constant c′′. The usual Gronwall lemma then implies

||δθ||2L2(Ω) = 0,

||δη||2L2(Ω) = 0, ∀t ∈ [0, T ].
(4.125)

Therefore, the weak solutions are unique. 2

4.2.11 Continuous dependence on initial data

We can use the same calculation used to show uniqueness to show con-

tinuous dependence of the solutions on the initial data. Suppose now that

(θ1, η1) and (θ2, η2) are two solutions with different initial data (gθ1, gη1) and

(gθ2, gη2). Then we can define
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δgθ = gθ2 − gθ1,

δgη = gη2 − gη1.
(4.126)

The usual Gronwall lemma then implies

||δθ||2L2(Ω) ≤ ||δgθ||
2
L2(Ω)e

c′′t,

||δη||2L2(Ω) ≤ ||δgη||
2
L2(Ω)e

c′′t.
(4.127)

Thus, for each t, ||δθ||L2(Ω) and ||δη||L2(Ω) can be made arbitrarily small by

choosing ||δgθ||L2(Ω) and ||δgη||L2(Ω) sufficiently small, which is what is meant

by continuous dependence of the solutions on the initial data.

4.3 Generalizations of the basic existence and uniqueness

results

4.3.1 Bounded nonlinearity model

For the bounded nonlinearity model, equation (4.7), the existence and

uniqueness proofs are much simpler since we are given a (constant) bound

on the nonlinearity f(θ). By the same general procedure as for the general

polynomial nonlinearity model, we find

θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

η ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

∂tθ ∈ L2(0, T ;H−1(Ω)),

∂tη ∈ L2(0, T ;H−1(Ω)),

(4.128)

with bounds that depend only on the norm of the initial data and on T.

4.3.2 Complex activator-inhibitor equation

Existence and uniqueness of weak solutions for the complex activator-
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inhibitor equation (4.8) can be proved by considering the corresponding cou-

pled pair of real activator-inhibitor equations,

τθ∂tθR = l2∆θR − (θ2
R + θ2

I)θR + θR + ηR,

τθ∂tθI = l2∆θI − (θ2
R + θ2

I )θI + θI + ηI ,

τη∂tηR = L2∆ηR − ηR − θR + CR,

τη∂tηI = L2∆ηI − ηI − θI + CI ,

(4.129)

where θR = Re{θ}, θI = Im{θ}, etc. Because of the form of the coupling be-

tween the two activator equations, we obtain an inequality like (4.44), but

with twice as many terms (i.e., for every term of (4.44) involving θm, there is

a corresponding term with θRm and another with θIm, and similarly for terms

of (4.44) involving ηm). Also, the boundary conditions

θR(∇θR · n) + θI(∇θI · n) = 0,

ηR(∇ηR · n) + ηI(∇ηI · n) = 0
(4.130)

on ∂Ω (where n is the unit outer normal to ∂Ω) still cause the boundary terms

from integrating

l2
[∫

Ω
θR∆θRdx +

∫
Ω
θI∆θIdx

]
+ L2

[∫
Ω
ηR∆ηRdx +

∫
Ω
ηI∆ηIdx

]
(4.131)

by parts to disappear. Therefore, the existence and uniqueness proofs go

through just as for the general polynomial-nonlinearity model. In fact, the

complex activator-inhibitor equation is just one example of how pairs of activator-

inhibitor equations can be coupled so that the same types of energy bounds

are still satisfied.

4.3.3 Additional symmetric long-range coupling

Symmetric long-range coupling can be added to the general polynomial-
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nonlinearity model by adding a term

(z ∗ θ)(x, t) =
∫

Ω
z(x− y)θ(y, t)dy (4.132)

to the ∂tθ equation, where z is symmetric about the origin, and the operator

norm of z ∗ · is bounded:

∃ρz > 0 such that ||z ∗ θ||L2(Ω) ≤ ρz||θ||L2(Ω), ∀θ ∈ L
2(Ω). (4.133)

(For periodic boundary conditions, the convolution operation is interpreted as

cyclic convolution.)

Since we have the bound∣∣∣∣ ∫
Ω

(z ∗ θ)(x)θ(x)dx
∣∣∣∣ ≤ ∫

Ω
|(z ∗ θ)(x)θ(x)|dx

≤
1

2
||z ∗ θ||L2(Ω) +

1

2
||θ||L2(Ω)

≤
1 + ρz

2
||θ||L2(Ω), (4.134)

inequality (4.44) is essentially unchanged. Furthermore, the additional term

which would appear in equation (4.72) would be easily bounded, so the exis-

tence proof would go through as for the general polynomial-nonlinearity model.

The uniqueness proof also requires only slight modification.

4.4 Existence and uniqueness of weak solutions for the ac-

tive transmission-line model without inhibitor diffusion

The standard approach for proving existence and uniqueness of weak

solutions for a hyperbolic system like (4.6) (without the ∂xxθ term) is the

vanishing viscosity method. Since the ∂xxθ term is present, to use the vanishing

viscosity method, we need only add a term ε∂xxη to the ∂tη equation:

τθ∂tθ = l2∂xxθ − θ
3 + θ − C − ∂xη,

τη∂tη = ε∂xxη − ∂xθ.
(4.135)
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From the existence and uniqueness analysis for the general parabolic active

transmission-line model, we have

θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L4(0, T ;L4(Ω)),

η ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

∂tθ ∈ L2(0, T ;H−1(Ω)) ∩ L4/3(0, T ;L4/3(Ω)),

∂tη ∈ L2(0, T ;H−1(Ω)),

(4.136)

with bounds that depend on the norm of the initial data, on T, and on ε (the

−η term missing from the ∂tη equation is not required for obtaining the above

energy estimates). The idea of the vanishing viscosity method is to obtain

bounds like (4.136) which are uniform in ε, so that they still hold as we take

ε→ 0.

The bounds

θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;L2(Ω)) ∩ L4(0, T ;L4(Ω)),

η ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;L2(Ω))
(4.137)

are already uniform in ε (in fact, so is θ ∈ L2(0, T ;H1(Ω)), since l > 0). We

need the results

θ ∈ L2(0, T ;H2(Ω)),

η ∈ L2(0, T ;H2(Ω)),
(4.138)

where the bounds depends on ε, to proceed further. This second derivative

bound is obtained in a similar fashion to the regularity proof for the general

polynomial-nonlinearity model given in the next section. With this bound, we

can define

ψ = ∂xθ,

ζ = ∂xη,
(4.139)

and the system of equations

96



τθ∂tψ = l2∂xxψ − 3θ2ψ + ψ + ∂xζ,

τη∂tζ = ε∂xxζ − ∂xψ
(4.140)

will be well-posed. (We will assume periodic or Neumann boundary conditions

for the original system so that this system will have either periodic or Dirichlet

boundary conditions.) By the same procedure as before, we can show that

there exists a unique weak solution to the system (4.140), and

ψ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

ζ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

∂tψ ∈ L2(0, T ;H−1(Ω)),

∂tζ ∈ L2(0, T ;H−1(Ω)),

(4.141)

with bounds depending only on T and on the norm of the initial data, for which

we assume

ψ(0) = ∂xgθ ∈ L2(Ω),

ζ(0) = ∂xgη ∈ L2(Ω).
(4.142)

By uniqueness of weak solutions for both the original system (4.135) and for

the system (4.140), we can conclude that, indeed, ∂xθ = ψ and ∂xη = ζ .

Furthermore, the bounds

ψ ∈ L2(0, T ;L2(Ω)),

ζ ∈ L2(0, T ;L2(Ω))
(4.143)

do not depend on ε, and so we have the necessary bounds independent of

ε to conclude the existence and uniqueness of weak solutions for the active

transmission line without inhibitor diffusion, equation (4.6). (The remaining

details are exactly as in the analysis of hyperbolic systems using the vanishing

viscosity method [46].)
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4.5 Regularity of weak solutions for the general

polynomial-nonlinearity model

4.5.1 Further energy bounds for θ and ∂tθ

Throughout the regularity analysis, we will only work with the θ equa-

tions, since the corresponding calculations for the η equations are identical.

Although our basic goal here is to prove

θ ∈ L2(0, T ;H2(Ω)),

η ∈ L2(0, T ;H2(Ω)),
(4.144)

we need to first prove some simpler energy bounds. Specifically, we need to

show

θ ∈ L∞(0, T ;H1(Ω)) ∩ L∞(0, T ;L2pθ(Ω)),

∂tθ ∈ L2(0, T ;L2(Ω)).
(4.145)

Even though we need to assume regularity of the boundary ∂Ω to prove the

bounds (4.144), we can prove the bounds (4.145) without requiring boundary

regularity. We do need to assume that the initial data satisfies

gθ ∈ L2pθ(Ω),

gη ∈ L2pη(Ω).
(4.146)

Starting with equation (4.26),

τθ(∂tθm, wk) +Bθ[θm, wk; t] = (−f(θm) + ηm, wk), (4.147)

we now multiply by ∂td
m
k and sum from k = 1 to m to obtain

τθ(∂tθm, ∂tθm) +Bθ[θm, ∂tθm; t] = (−f(θm) + ηm, ∂tθm). (4.148)
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Written out, the bilinear term looks like

Bθ[θm, ∂tθm; t] =
∫

Ω

n∑
i,j=1

aij(∂xiθm)[∂xj(∂tθm)]dx +
∫

Ω

n∑
i=1

bi(∂xiθm)(∂tθm)dx

+
∫

Ω
c θm(∂tθm)dx. (4.149)

Defining

Aθ[u, v] =
∫

Ω

n∑
i,j=1

aij(∂xiu)(∂xjv)dx, ∀u, v ∈ H1(Ω), (4.150)

we then have

1

2

d

dt
Aθ[u, v] =

1

2

∫
Ω

n∑
i,j=1

aij[(∂xi(∂tu))(∂xjv) + (∂xiu)(∂xj(∂tv))]dx

+
1

2

∫
Ω

n∑
i,j=1

(∂taij)(∂xiu)(∂xjv)dx, (4.151)

so

∫
Ω

n∑
i,j=1

aij(∂xiθm)[∂xj(∂tθm)]dx

=
1

2

∫
Ω

n∑
i,j=1

aij [(∂xi(∂tθm))(∂xjθm) + (∂xiθm)(∂xj(∂tθm))]dx

=
1

2

d

dt
Aθ[θm, θm]−

1

2

∫
Ω

n∑
i,j=1

(∂taij)(∂xiθm)(∂xjθm)dx, (4.152)

since by assumption aij = aji. We assumed that ∂taij was continuous ∀i, j,

and if we further assume that ∂taij is bounded ∀i, j, then∣∣∣∣∣∣12
∫

Ω

n∑
i,j=1

(∂taij)(∂xiθm)(∂xjθm)dx

∣∣∣∣∣∣ ≤ C0||θm||
2
H1(Ω) (4.153)

for some constant C0. Also, using Holder’s inequality and Cauchy’s inequality

with ε,

∫
Ω

n∑
i=1

bi(∂xiθm)(∂tθm)dx +
∫

Ω
c θm(∂tθm)dx ≤

C1

ε
||θm||

2
H1(Ω) + ε||∂tθm||

2
L2(Ω),

(4.154)

for all ε > 0 and some constant C1 > 0.
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Next, we have

(−f(θm) + ηm, ∂tθm) = −(f(θm), ∂tθm) + (ηm, ∂tθm), (4.155)

but again by Holder’s inequality and Cauchy’s inequality with ε we have

|(ηm, ∂tθm)| ≤
C2

ε
||ηm||

2
L2(Ω) + ε||∂tθm||

2
L2(Ω). (4.156)

We can also write

(f(θm), ∂tθm) =
∫

Ω

(
aθθ

2pθ−1
m + a2pθ−2θ

2pθ−2
m + · · ·+ a1θm + a0

)
∂tθmdx

=
aθ
2pθ

∂t

∫
Ω
θ2pθ
m dx +

a2pθ−2

2pθ − 1
∂t

∫
Ω
θ2pθ−1
m dx + · · ·

+
a1

2
∂t

∫
Ω
θ2
mdx + a0∂t

∫
Ω
θmdx. (4.157)

We thus obtain the following inequality:

τθ||∂tθm||
2
L2(Ω) +

1

2
∂tAθ[θm, θm] +

aθ

2pθ
∂t

∫
Ω
θ2pθ
m dx

+
a2pθ−2

2pθ − 1
∂t

∫
Ω
θ2pθ−1
m dx + · · ·+

a1

2
∂t

∫
Ω
θ2
mdx + a0∂t

∫
Ω
θmdx

≤
(
C0 +

C1

ε

)
||θm||

2
H1(Ω) +

C2

ε
||ηm||

2
L2(Ω) + 2ε||∂tθm||

2
L2(Ω).

(4.158)

Integrating from 0 to T ′ ≤ T , and taking ε = τθ/4, we obtain

τθ

2

∫ T ′

0
||∂tθm||

2
L2(Ω)dt+

1

2
(Aθ[θm(T ′), θm(T ′)]− Aθ[θm(0), θm(0)])

+
aθ
2pθ

(
||θm(T ′)||2pθ

L2pθ (Ω)
− ||θm(0)||2pθ

L2pθ (Ω)

)
+
a2pθ−2

2pθ − 1

(∫
Ω
θ2pθ−1
m (T ′)dx−

∫
Ω
θ2pθ−1
m (0)dx

)
+ · · ·

+
a1

2

(
||θm(T ′)||2L2(Ω) − ||θm(0)||2L2(Ω)

)
+ a0

(∫
Ω
θm(T ′)dx−

∫
Ω
θm(0)dx

)
≤
(
C0 +

4C1

τθ

)
||θm||

2
L2(0,T ;H1(Ω)) +

4C2

τθ
||ηm||

2
L2(0,T ;L2(Ω)). (4.159)
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The terms involving θm(0) can all be taken to the right-hand side of the in-

equality and bounded, if necessary. For example,

a2pθ−2

2pθ − 1

∫
Ω

(θm(0))2pθ−1dx ≤

∣∣∣∣∣ a2pθ−2

2pθ − 1

∣∣∣∣∣
∫

Ω
|θm(0)|2pθ−1dx

=

∣∣∣∣∣ a2pθ−2

2pθ − 1

∣∣∣∣∣ ||θm(0)||2pθ−1
L2pθ−1(Ω)

≤ C2pθ−1||θm(0)||2pθ−1
L2pθ (Ω)

, (4.160)

for some constant C2pθ−1 > 0. The final step in the above equation follows

from Holder’s inequality:

||θm(0)||2pθ−1
L2pθ−1(Ω)

=
∫

Ω
|θm(0)|2pθ−1dx

≤ C ′2pθ−1

(∫
Ω
|θm(0)|

(2pθ−1)

(
2pθ

2pθ−1

)
dx

)2pθ−1

2pθ

= C ′2pθ−1||θm(0)||2pθ−1
L2pθ (Ω)

. (4.161)

The terms involving θm(T ′) (excluding the Aθ[θm(T ′), θm(T ′)] term) can be

bounded using Holder’s inequality followed by Young’s inequality with ε:∫
Ω

(θm(T ′))2pθ−1dx ≤
∫

Ω
|θm(T ′)|2pθ−1dx

≤ C ′′2pθ−1

(∫
Ω
|θm(T ′)|

(2pθ−1)

(
2pθ

2pθ−1

)
dx

)2pθ−1

2pθ

= C ′′2pθ−1

(∫
Ω
|θm(T ′)|2pθdx

) 2pθ−1

2pθ

≤ ε
(∫

Ω
|θm(T ′)|2pθdx

) 2pθ−1

2pθ
·

2pθ
2pθ−1

+ C ′′′2pθ−1(ε)

= ε||θm(T ′)||2pθ
L2pθ (Ω)

+ C ′′′2pθ−1(ε). (4.162)

By choosing the various epsilons sufficiently small, we can reduce inequality

(4.159) to

τθ
2

∫ T ′

0
||∂tθm||

2
L2(Ω)dt+

1

2
Aθ[θm(T ′), θm(T ′)] + cθ1||θm(T ′)||2pθ

L2pθ (Ω)

≤
1

2
Aθ[θm(0), θm(0)] +

(
C0 +

4C1

τθ

)
||θm||

2
L2(0,T ′;H1(Ω))

+
4C2

τθ
||ηm||

2
L2(0,T ′;L2(Ω)) + cθ2||θm(0)||2pθ

L2pθ (Ω)
+ cθ3, (4.163)
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where cθ1 > 0 and all of cθ1, cθ2, and cθ3 can be chosen independently of T ′

for 0 < T ′ < T . We can change the T ′s on the right-hand side of the last

inequality to T s, and then observe that the right-hand side is bounded above

by some constant independent of m due to the energy estimates we obtained

in the existence/uniqueness proof. It then follows immediately that we have

the bounds

θm ∈ L∞(0, T ;L2pθ(Ω)),

∂tθm ∈ L2(0, T ;L2(Ω)).
(4.164)

Furthermore, since by the uniformly parabolic condition satisfied by Bθ, Aθ

satisfies

Aθ[θm(T ′), θm(T ′)] ≥ A
∫

Ω
|∇θm(T ′)|2dx, (4.165)

it follows that we have ∇θm bounded in L2(Ω), ∀t ∈ [0, T ], which when com-

bined with the bound

θm ∈ L
∞(0, T ;L2(Ω)), (4.166)

leads to

θm ∈ L
∞(0, T ;H1(Ω)). (4.167)

Since the bounds we have just derived for θm and ∂tθm are independent

of m, we can pass to limits, and conclude that (4.145) holds.

4.5.2 Outline of regularity proof

The details of the regularity proof (i.e., showing that the bounds (4.144)

hold), are cumbersome and essentially similar to the standard approach for

parabolic equations [46]. The idea behind the proof is as follows. We know

from the existence and uniqueness theory that for a.e. t ∈ [0, T ],

τθ(∂tθ, v) +Bθ[θ, v; t] = (−fθ(θ) + η, v), ∀v ∈ H1(Ω) ∩ L2pθ(Ω). (4.168)
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We can rewrite this expression as

Bθ[θ, v; t] = (−τθ∂tθ − fθ(θ) + η, v), (4.169)

and furthermore, expand Bθ[θ, v; t] to obtain

∫
Ω

n∑
i,j=1

aij(∂xiθ)(∂xjv)dx = −
∫

Ω

[
n∑
i=1

bi(∂xiθ)v + c θv

]
dx− τθ(∂tθ, v)

−(fθ(θ), v) + (η, v). (4.170)

Each term on the right-hand side of the above equation, when integrated from

0 to T , is bounded in absolute value due to the energy bounds we have already

obtained (in the existence/uniqueness proof and in the previous subsection).

What we would like to obtain is a bound involving the term on the left-hand

side of the above equation and the second derivatives of θ.

The hypothesis of boundary regularity we need is ∂Ω ∈ C2. By definition,

given Ω ⊂ Rn, open and bounded, ∂Ω is Ck if ∀x0 ∈ ∂Ω, there exist r > 0,

coordinates x1, ...,xn, and a Ck function γ : Rn−1 → R, such that

Ω ∩B(x0, r) =
{
x ∈ B(x0, r) | xn > γ(x1, ...,xn−1)

}
, (4.171)

where B(x0, r) is the open ball of radius r centered at x0. If the boundary

conditions are periodic boundary conditions, then we can think of Ω as an

n-torus, a nice, compact manifold. The issue of boundary regularity therefore

does not arise if the boundary conditions are periodic, and thus the bounds

(4.144) hold.

For the general parabolic active transmission line, the same regularity

result holds.
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4.6 Dissipativity results

4.6.1 The notion of dissipativity

For finite-dimensional systems, the physical notion of dissipativity can

be tied to the mathematical concept of the existence of an absorbing set.

For infinite-dimensional systems, it is not so clear how dissipativity should be

precisely defined, since there are systems which are considered “dissipative,”

but for which the existence of absorbing sets has not been established [47].

However, if for an infinite-dimensional system we can prove the existence of

an absorbing set, we can certainly label the system dissipative. The cubic

nonlinearity model does possess an absorbing set, and therefore we are justified

in labeling it a dissipative system. The energy bounds required to show the

existence of an absorbing set are stronger than those required to show existence,

uniqueness, and regularity of solutions.

Let u(t) = (θ(t), η(t)) denote the solution for the cubic nonlinearity

model, let u0 = u(0), and let L = L2(Ω) × L2(Ω). Then the semigroup

{S(t)}t≥0 defined by

S(t) : L → L

u0 7→ u(t)
(4.172)

is well-defined for ∀t ∈ [0, T ] for T arbitrarily large. Note that L ⊃ H =

(H1(Ω)∩L2pθ(Ω))× (H1(Ω)∩L2pη(Ω)) where H is the Hilbert space in which

u(t) lies for almost every t. However, writing S(t) : L → L reflects the fact

that our initial conditions only need to be in L for the existence and uniqueness

theory to hold.
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The semigroup {S(t)}t≥0 satisfies the basic semigroup properties,

S(t+ s) = S(t) · S(s), ∀s, t ≥ 0,

S(0) = I (the identity), (4.173)

u(t+ s) = S(t)u(s) = S(s)u(t),

and in addition, because of the continuous dependence of solutions on initial

data, we have that S(t) is a continuous operator ∀t ≥ 0.

For u0 ∈ L, the trajectory starting at u0 is the set
⋃
t≥0 S(t)u0. For

u0 ∈ L or A ∈ L, the ω-limit set is

ω(u0) =
⋂
s≥0

⋃
t≥s

S(t)u0,

ω(A) =
⋂
s≥0

⋃
t≥s

S(t)A,
(4.174)

where the closures are taken in L. The ω-limit set has the property that

φ ∈ ω(A)⇐⇒ ∃φn ∈ A and tn →∞ such that S(tn)φn → φ as n→∞.

(4.175)

Note also that the ω-limit set of A is not the same as the union of the ω-limit

sets of each u0 in A.

The operators S(t) are uniformly compact for large t if for all bounded

sets B there exists t0 depending on B such that
⋃
t≥t0 S(t)B is relatively compact

in L. By relatively compact, we mean the closure of a set is compact. We then

have the following lemma (proved in [47]):

Lemma 4.4 Assume that for some subset A ⊂ L, A 6= ∅, and for some

t0 > 0, the set
⋃
t≥t0 S(t)A is relatively compact in L. Then ω(A) is nonempty,

compact, and invariant.
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An equilibrium point is a point u0 ∈ L such that S(t)u0 = u0, ∀t ≥ 0. A

set X ⊂ L is positively invariant for the semigroup S(t) if S(t)X ⊂ X, ∀t ≥ 0,

negatively invariant if S(t)X ⊃ X, ∀t ≥ 0, and invariant if S(t)X = X, ∀t ≥ 0.

An attractor is a set A ⊂ L such that

(i) A is invariant; i.e., S(t)A = A, ∀t ≥ 0, and

(ii) ∃ U , open, such that ∀u0 ∈ U , S(t)u0 → A as t→∞; i.e.,

dist(S(t)u0,A)→ 0 as t→∞.

The largest such U is the basin of attraction of A. If the basin of attraction

of A is all of L, then A is a global attractor for {S(t)}t≥0.

Let B ⊂ U where U is an open set in L. Then B is an absorbing set in U

if the orbit of any bounded set of U enters into B after a certain time (which

may depend on the set); i.e., ∀B0 ⊂ U , B0 bounded, ∃t1 (depending on B0)

such that S(t)B0 ⊂ B, ∀t ≥ t1.

The existence of a global attractor implies the existence of an absorbing

set. With an additional hypothesis, namely the uniform compactness of S(t),

the existence of an absorbing set implies the existence of an attractor. The

following theorem is proved by Temam [47]:

Theorem 4.5 Suppose L is a metric space and that the operators S(t) satisfy

the semigroup properties and are continuous operators from L into itself, ∀t >

0. Also, assume the S(t) are uniformly compact. Suppose that there exists an

open set U and a bounded set B of U such that B is absorbing in U . Then the

ω-limit set of B, A = ω(B), is a compact attractor which attracts the bounded
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sets of U . It is the maximal bounded attractor. Furthermore, if L is a Banach

space and U is convex and connected, then A is connected, too.

In applying the above theorem, we have L a Hilbert space, and U = L so

that the resulting attractor is a global attractor. Instead of using the above

theorem of Temam as stated, we will instead specialize to a theorem whose

hypotheses are easier to check for our examples of interest:

Theorem 4.6 Suppose L is a Banach space and that the operators S(t) satisfy

the semigroup properties and are continuous operators from L into itself, ∀t >

0. Suppose that there exists an open set U and a bounded set B of U ∩H such

that B ⊂ H ⊂⊂ L and B is absorbing in U . Then the ω-limit set of B,

A = ω(B), is a compact attractor which attracts the bounded sets of U . It is

the maximal bounded attractor. Furthermore, if U is convex and connected,

then A is connected, too.

Remark: By H ⊂⊂ L, for H and L Banach spaces, we mean H is compactly

embedded in L. For our H and L, H ⊂⊂ L follows from standard compactness

theory [46].

Proof: Since B is an absorbing set, S(t)B ⊂ B, ∀t ≥ t1. Thus, ∪t≥t1S(t)B ⊂ B

is bounded in H and hence relatively compact in L, so the earlier lemma

applies: A = ω(B) is nonempty, compact, and invariant. The rest of the proof

is identical to the proof of the earlier theorem by Temam. 2

4.6.2 Cubic nonlinearity model

Lemma 4.7 The basic cubic nonlinearity model, equation (4.1), possess a

compact, connected, global attractor.
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Proof: To demonstrate the dissipativity of the basic cubic nonlinearity model,

equation (4.1), we need to exhibit an absorbing set in H. In fact, this absorbing

set will absorb all the bounded sets of H. The existence of this absorbing set

will then imply the existence of a global attractor by theorem 4.6.

The absorbing set in H is found by deriving strong enough energy bounds

for the solutions θ and η, and also for ∇θ and ∇η. To obtain the energy bound

for θ and η, we multiply the θ equation through by θ, the η equation through

by η, integrate over Ω, and sum the results to obtain∫
Ω
τθθ∂tθdx +

∫
Ω
τηη∂tηdx− l

2
∫

Ω
θ∆θdx− L2

∫
Ω
η∆ηdx

+
∫

Ω
(θ4 − θ2)dx +

∫
Ω

(η2 − Cη)dx = 0, (4.176)

for a.e. t. (That we can perform this calculation follows from the existence,

uniqueness, and regularity theory.) We then compute

1

2
∂t

[
τθ

∫
Ω
θ2dx + τη

∫
Ω
η2dx

]
+ l2

∫
Ω
|∇θ|2dx + L2

∫
Ω
|∇η|2dx

+
∫

Ω
(θ4 − θ2)dx +

∫
Ω

(η2 − Cη)dx = 0. (4.177)

Using Holder’s inequality and Young’s inequality, we have∫
Ω
θ2dx ≤

(∫
Ω
θ4dx

)1/2 (∫
Ω

12dx
)1/2

=
√
|Ω|

(∫
Ω
θ4dx

)1/2

≤
1

2

∫
Ω
θ4dx +

1

2
|Ω|,∫

Ω
θ4dx ≥ 2

∫
Ω
θ2dx− |Ω|, (4.178)

where |Ω| =
∫
Ω dx. Similarly,∫

Ω
|Cη|dx ≤

(∫
Ω
C2dx

)1/2 (∫
Ω
η2dx

)1/2

= |C|
√
|Ω|

(∫
Ω
η2dx

)1/2

≤
1

2

∫
Ω
η2dx +

1

2
C2|Ω|. (4.179)
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Substituting in these inequalities, we obtain

1

2
∂t

[
τθ

∫
Ω
θ2dx + τη

∫
Ω
η2dx

]
+ l2

∫
Ω
|∇θ|2dx

+L2
∫

Ω
|∇η|2dx +

∫
Ω
θ2dx +

1

2

∫
Ω
η2 ≤

(
1 +

1

2
C2
)
|Ω|. (4.180)

It then follows that

∂t

[
τθ

∫
Ω
θ2dx + τη

∫
Ω
η2dx

]
+ c1

[
τθ

∫
Ω
θ2dx + τη

∫
Ω
η2dx

]
≤ (2 + C2)|Ω|,

(4.181)

where c1 is a positive constant. If we identify

y1(t) = τθ

∫
Ω
θ2dx + τη

∫
Ω
η2dx, (4.182)

then the usual Gronwall lemma implies

y1(t) ≤ y1(0)e−c1t +
∫ t

0
(2 + C2)|Ω|e−

∫ s
t

(−c1)dτds

= y1(0)e−c1t + (2 + C2)|Ω|(1− e−t). (4.183)

Thus, for sufficiently large t,

τθ

∫
Ω
θ2dx + τη

∫
Ω
η2dx ≤ c2, (4.184)

for any c2 > (2 + C2)|Ω|. Furthermore, the time t0 after which this bound

holds for a fixed c2 can be given as a function of the L2(Ω)-norm of the initial

data.

To obtain the energy bound for ∇θ and ∇η, we multiply the θ equation

through by ∆θ, the η equation through by ∆η, integrate over Ω, and sum the

results to obtain

−
∫

Ω
τθ∆θ∂tθdx−

∫
Ω
τη∆η∂tηdx +

∫
Ω
l2(∆θ)2dx +

∫
Ω
L2(∆η)2dx

−
∫

Ω
(θ3 − θ)∆θdx−

∫
Ω

(η − C)∆ηdx = 0,

(4.185)
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for almost every t. (That we can perform this calculation follows from the

existence, uniqueness, and regularity theory.) The cross-term disappeared be-

cause ∫
Ω
η∆θdx = −

∫
Ω
∇η · ∇θdx =

∫
Ω
θ∆ηdx. (4.186)

We then compute

τθ

∫
Ω
∇θ · (∂t(∇θ))dx + τη

∫
Ω
∇η · (∂t(∇η))dx + l2

∫
Ω

(∆θ)2dx

+L2
∫

Ω
(∆η)2dx +

∫
Ω

(3θ2 − 1)|∇θ|2dx +
∫

Ω
|∇η|2dx +

∫
Ω
C∆ηdx = 0.

(4.187)

The final term on the left-hand-side can be eliminated for Neumann or periodic

boundary conditions. However, for Dirichlet boundary conditions, the final

term is possibly nonzero. Using Holder’s inequality and Young’s inequality

with epsilon, we have

∫
Ω
|C∆η|dx ≤

(∫
Ω
C2dx

)1/2 (∫
Ω

(∆η)2dx
)1/2

= C
√
|Ω|

(∫
Ω

(∆η)2dx
)1/2

≤ ε
∫

Ω
(∆η)2dx + c(ε)C2|Ω|. (4.188)

We can then choose ε = L2/2 to obtain

1

2
∂t

[
τθ

∫
Ω
|∇θ|2dx + τη

∫
Ω
|∇η|2dx

]
+ l2

∫
Ω

(∆θ)2dx +
L2

2

∫
Ω

(∆η)2dx

+
∫

Ω
3θ2|∆θ|2dx +

∫
Ω
|∇η|2dx ≤ c3 +

∫
Ω
|∇θ|2dx,(4.189)

where c3 > 0 is a constant. It then follows that we can write

∂t

[
τθ

∫
Ω
|∇θ|2dx + τη

∫
Ω
|∇η|2dx

]
≤

2

τθ

[
τθ

∫
Ω
|∇θ|2dx + τη

∫
Ω
|∇η|2dx

]
+ 2c3,

(4.190)

where 2/τθ and 2c3 are both positive constants. Next, we need to apply the

uniform Gronwall lemma [47]:
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Lemma 4.8 Let g, h, and y be positive locally integrable functions on [t0,∞)

such that dy/dt is locally integrable on [t0,∞), and which satisfy

dy

dt
≤ gy + h, ∀t ≥ t0. (4.191)

Furthermore, suppose∫ t+r

t
g(s)ds ≤ a1,

∫ t+r

t
h(s)ds ≤ a2,

∫ t+r

t
y(s)ds ≤ a3, ∀t ≥ t0,

(4.192)

where r, a1, a2, and a3 are positive constants. Then

y(t+ r) ≤
(
a3

r
+ a2

)
ea1 , ∀t ≥ t0. (4.193)

Identifying

y2(t) = τθ

∫
Ω
|∇θ|2dx + τη

∫
Ω
|∇η|2dx,

g(t) = 2/τθ, (4.194)

h(t) = 2c3,

we see that

a1 =
2

τθ
r,

a2 = 2c3r,

(4.195)

and the remaining hypothesis we need to check is∫ t+r

t
y2(s)ds ≤ a3, ∀t ≥ t0, (4.196)

for some t0 and for some a3 which can depend on r. We need to go back to

inequality (4.180) and integrate from t to t+ r to obtain

1

2

[
τθ||θ(t+ r)||2L2(Ω) + τη||η(t+ r)||2L2(Ω)

]
−

1

2

[
τθ||θ(t)||

2
L2(Ω) + τη||η(t)||2L2(Ω)

]
+
∫ t+r

t

[
l2||∇θ||2L2(Ω) + L2||∇η||2L2(Ω)

]
ds+

∫ t+r

t
||θ||2L2(Ω)ds

+
1

2

∫ t+r

t
||η||2L2(Ω)ds ≤

(
1 +

1

2
C2
)
|Ω|r. (4.197)
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Throwing away some positive terms, we obtain the inequality

∫ t+r

t

[
l2||∇θ||2L2(Ω) + L2||∇η||2L2(Ω)

]
ds

≤
(

1 +
1

2
C2
)
|Ω|r +

1

2

[
τθ||θ(t)||

2
L2(Ω) + τη||η(t)||2L2(Ω)

]
, (4.198)

and by appropriate choice of c4 > 0, it follows that

c4

∫ t+r

t

[
τθ||∇θ||

2
L2(Ω) + τη||∇η||

2
L2(Ω)

]
ds

≤
(

1 +
1

2
C2
)
|Ω|r +

1

2

[
τθ||θ(t)||

2
L2(Ω) + τη||η(t)||2L2(Ω)

]
.(4.199)

Thus,

c4

∫ t+r

t
y2(s)ds ≤

(
1 +

1

2
C2
)
|Ω|r +

1

2
y1(t). (4.200)

But the result of the energy bound calculation for θ and η is that there is some

t0 for which y1(t) ≤ c2 when t ≥ t0, and so

∫ t+r

t
y2(s)ds ≤ a3 =

(
1 + 1

2
C2
)
|Ω|r

c4

+
1

2

c2

c4

, ∀t ≥ t0. (4.201)

Thus, the hypotheses of the uniform Gronwall lemma are satisfied, and we can

conclude that

τθ||∇θ||
2
L2(Ω) + τη||∇η||

2
L2(Ω) ≤ c5, ∀t ≥ t1, (4.202)

for some constant c5 > 0 and some t1 > t0 > 0. Furthermore, we can take

t1 = t0 +r for some r > 0 which is fixed a priori. The constant c5 can be chosen

so as to depend on c2 and r (and the other constants in the cubic nonlinearity

PDEs) only.

Now, H = (H1(Ω)∩L4(Ω))×(H1(Ω)∩L2(Ω)) is the Hilbert space in which

we are looking for an absorbing set. H inherits a metric from H1(Ω)×H1(Ω),

and if θ and η are bounded in H1(Ω)-norm, so too will u = (θ, η) be bounded

in H-norm. We can fix r > 0 and c2 > (2 +C2)|Ω| a priori, and then we know

112



that after some time t0 depending only on the L2(Ω)-norm of the initial data,

we will have

τθ

∫
Ω
θ2dx + τη

∫
Ω
η2dx ≤ c2. (4.203)

Also, the greater the magnitude of the initial data, the greater the t0, and for

sufficiently small initial data, t0 = 0. Furthermore, having chosen c2 and r, we

can then find c5 so that ∀t ≥ t1 = t0 + r, we will have

τθ||∇θ||
2
L2(Ω) + τη||∇η||

2
L2(Ω) ≤ c5. (4.204)

Thus, taking u = (θ, η) we see that there is some ball B of radius ρ > 0 in

H such that after some time t1, which depends on the norm of u0, u(t) ∈ B,

∀t ≥ t1. In fact, for any bounded set B0 ⊂ L, ∃t1 (depending on B0) such

that S(t)B0 ⊂ B, ∀t ≥ t1, because only the L2(Ω)-norm of the initial data

was used. Hence B satisfies the definition of an absorbing set in L. Then

since B is bounded and B ⊂ H ⊂⊂ L, we can conclude from Theorem 4.6

that a compact, connected, global attractor A = ω(B) exists for the cubic

nonlinearity model. 2

4.6.3 Active transmission-line models

The active transmission-line model with inhibitor dissipation and dif-

fusion, equation (4.3), possesses the same dissipativity property as the basic

cubic nonlinearity model, and the proof is nearly identical to the one given in

the previous subsection.

The active transmission-line model without inhibitor diffusion, equation

(4.6), cannot possess the same dissipativity property. In particular, adding

a constant to η does not change the dynamics, so we cannot hope to find a

bound eventually satisfied by ||η||L2(Ω) that is independent of the initial data.
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4.6.4 Cubic nonlinearity model with an additional advective term

With some slight modifications to the proof of dissipativity for the basic

cubic nonlinearity model, it is also possible to prove the dissipativity property

for the cubic nonlinearity model with an additional advective term, equation

(4.5). The term v · ∇η is the advective term, meaning its effect is to cause

steady-state solutions for η to the basic cubic nonlinearity model to translate

spatially in time with a velocity v. We will think of v for now as being a pre-

scribed continuously differentiable function of x and t. The reason for adding

the advective term to the basic cubic nonlinearity model is to allow equilib-

rium spike solutions of the basic cubic nonlinearity model to move around

under some type of control (in this case, a control prescribed by choice of

v(x, t)). We will assume that

sup
Ω×[0,T ]

|v(x, t)| < L. (4.205)

Even with the advective term, this system of PDEs lies within the class of

systems for which we proved existence, uniqueness, and regularity.

Lemma 4.9 The cubic nonlinearity model with additional advective term, equa-

tion (4.5), with the bound (4.205), possesses a compact, connected, global at-

tractor.

Proof: We will begin by deriving a bound for Bη[η, η; t], where

Bη[u, w; t] =
∫

Ω

[
n∑
i=1

L2(∂xiu)(∂xiw) +
n∑
i=1

vi(∂xiu)w

]
dx (4.206)

is the bilinear form associated with the η equation. Keep in mind that L is

constant, whereas the vi are functions of x and t. Then

L2
∫

Ω
|∇η|2dx =

∫
Ω

n∑
i=1

L2(∂xiη)(∂xiη)
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= Bη[η, η; t]−
∫

Ω

n∑
i=1

vi(∂xiη)ηdx

≤ Bη[η, η; t] + ( sup
Ω×[0,T ]

|v|)||∇η||L2(Ω)||η||L2(Ω)

≤ Bη[η, η; t] + ( sup
Ω×[0,T ]

|v|)
(
ε||∇η||2L2(Ω) +

1

4ε
||η||2L2(Ω)

)
.

(4.207)

If we take

ε( sup
Ω×[0,T ]

|v|) =
L2

2
, (4.208)

then we obtain

L2

2
||∇η||2L2(Ω) ≤ Bη[η, η; t] +

1

2L2
( sup

Ω×[0,T ]
|v|)2||η||2L2(Ω), (4.209)

or

Bη[η, η; t] ≥
L2

2
||∇η||2L2(Ω) −

1

2L2
( sup

Ω×[0,T ]
|v|)2||η||2L2(Ω). (4.210)

Now when we multiply the η dynamical equation through by η and inte-

grate over Ω, we obtain∫
Ω
τηη(∂tη)dx +

∫
Ω

[
−L2η(∆η) + η(v · ∇η)

]
dx +

∫
Ω
θηdx +

∫
Ω
η(η − C)dx

= ∂t

[
τη

∫
Ω
η2dx

]
+Bη[η, η; t] +

∫
Ω
θηdx +

∫
Ω
η(η − C)dx. (4.211)

Then proceeding as in the case of the basic cubic nonlinearity model, we obtain

1

2
∂t

[
τθ

∫
Ω
θ2dx + τη

∫
Ω
η2dx

]
+ l2

∫
Ω
|∇θ|2dx +

L2

2

∫
Ω
|∇η|2dx

+
∫

Ω
θ2dx +

1

2

(
1−

1

L2
( sup

Ω×[0,T ]
|v|)2

)∫
Ω
η2dx ≤

(
1 +

1

2
C2
)
|Ω|.

(4.212)

As a result of our assumption supΩ×[0,T ] |v| < L, we obtain an energy bound

for θ and η just as in the basic cubic nonlinearity model case.

For the energy bound on ∇θ and ∇η, when we multiply the θ and η

equations through by ∆θ and ∆η and then integrate over Ω, we obtain the
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additional term ∫
Ω

(v · ∇η)(∆η)dx, (4.213)

which was not present before. However, we can bound this term as follows:∫
Ω

(v · ∇η)∆ηdx ≤ ( sup
Ω×[0,T ]

|v|)||∇η||L2(Ω)||∆η||L2(Ω)

≤ ( sup
Ω×[0,T ]

|v|)
(
ε||∆η||2L2(Ω) +

1

4ε
||∇η||2L2(Ω)

)
.(4.214)

Choosing

ε( sup
Ω×[0,T ]

|v|) =
L2

2
, (4.215)

we obtain

τθ

∫
Ω
∇θ(∂t(∇θ))dx + τη

∫
Ω
∇η(∂t(∇η))dx + l2

∫
Ω

(∆θ)2dx

+
L2

2

∫
Ω

(∆η)2dx +
∫

Ω
(3θ2 − 1)|∇θ|2dx +

∫
Ω
|∇η|2dx +

∫
Ω
C∆ηdx

≤
1

2L2
( sup

Ω×[0,T ]
|v|)2

∫
Ω
|∇η|2dx. (4.216)

As long as supΩ×[0,T ] |v| is bounded, we see that the necessary bound on ∇θ

and ∇η can be obtained in this case.

Thus, as was the case for the basic cubic nonlinearity model, we can claim

that a compact, connected, global attractor exists for the cubic nonlinearity

model with the additional advective term. 2

4.6.5 Cubic nonlinearity model with additional symmetric long-range

coupling

Lemma 4.10 The basic cubic nonlinearity model with additional symmetric

long-range coupling,

τθ∂tθ = l2∆θ − θ3 + θ + η + z ∗ θ,

τη∂tη = L2∆η − η − θ + C,
(4.217)
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where the convolution term is bounded according to equation (4.133), possess

a compact, connected, global attractor.

Proof: The proof is similar to that of lemma 4.7, but with a couple of modifi-

cations. Instead of inequality (4.178), Young’s inequality with ε must be used

to obtain ∫
Ω
θ4dx ≥

1

ε

∫
Ω
θ2dx−

4

ε2
|Ω|, (4.218)

where we take ε sufficiently small that

1

ε
>

1 + ρz
2

+ 1. (4.219)

Also, the extra term
∫

Ω ∆θ(z ∗ θ)dx can be integrated by parts, giving

∫
Ω

∆θ(z ∗ θ)dx =
∫

Ω
∆θ

∫
Ω
z(y)θ(x− y)dydx

= −
∫

Ω
∇θ ·

∫
Ω
z(y)∇θ(x− y)dydx

=
∫

Ω
∇θ · (z ∗ ∇θ)dx, (4.220)

where we have assumed that the boundary term from the integration by parts

has vanished. Thus, the extra term appearing in equation (4.185) satisfies the

bound ∣∣∣∣ ∫
Ω

∆θ(z ∗ θ)dx| ≤
(1 + ρz)n

2
||∇θ||L2(Ω), (4.221)

and as for the basic cubic nonlinearity model, we can claim that a compact,

connected, global attractor exists for the cubic nonlinearity model with addi-

tional symmetric long-range coupling. 2

4.6.6 Complex activator-inhibitor equation

Lemma 4.11 The complex activator-inhibitor equation (4.8) with periodic

boundary conditions possess a compact, connected, global attractor.
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Proof: The proof is analogous to that of lemma 4.7, but with both real and

imaginary parts of the θ and η appearing in the expressions. 2
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Chapter 5

Lyapunov Functionals

5.1 Introduction

Since dissipation plays a crucial role in the behavior of activator-inhibitor

equations, it is natural to try to apply energy methods. In fact, for the cubic

nonlinearity model, it is easy to write down an energy functional V for which

the system is a gradient system, but with respect to an indefinite metric. It

turns out that for the cubic nonlinearity model, this energy functional, for

certain parameter values, leads us to find a radially unbounded Lyapunov

functional V ∗, with V̇ ∗ ≤ 0, and with V̇ ∗ = 0 only at equilibrium points

of the dynamics. This result is an infinite-dimensional generalization of a

corresponding result of Brayton and Moser for systems of ODEs [12, 49].

To illustrate the technique of Brayton and Moser, we spatially discretize

the cubic nonlinearity model to obtain a system of ODEs. The discretized dy-

namics are shown to be gradient dynamics with respect to an energy function,

in analogy with the PDE system. The procedure of Brayton and Moser is then

applied to the system of ODEs, yielding a Lyapunov function, provided the

ratio of time constants, α = τθ/τη, is greater than one. Since the Lyapunov

function V ∗ is radially unbounded, and satisfies V̇ ∗ ≤ 0 with V̇ ∗ = 0 only at

equilibrium points of the dynamics, LaSalle’s invariance principle enables us

to conclude that all trajectories converge to the set of equilibrium points of

the dynamics [44].

Having shown how the technique of Brayton and Moser applies to the
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discretized system of ODEs, we then show how the technique extends to the

infinite-dimensional setting for the basic cubic nonlinearity model. Having ob-

tained the Lyapunov functional for the cubic nonlinearity model, we then show

how related Lyapunov functionals can be obtained for the cubic nonlinearity

model with additional long-range coupling, the complex activator-inhibitor

equation, the bounded-nonlinearity model, and the active transmission line

(with inhibitor diffusion and dissipation).

5.2 Gradient dynamics property of the cubic nonlinearity

model

For the cubic nonlinearity model, there is an energy functional

V =
∫

Ω

[
l2

2
|∇θ|2 +

1

4
θ4 −

1

2
θ2 − θη −

L2

2
|∇η|2 −

1

2
η2 + Cη

]
dx, (5.1)

such that

V̇ =
δV

δθ
· (∂tθ) +

δV

δη
· (∂tη)

= −
∫

Ω

[
τθ(∂tθ)

2 − τη(∂tη)2
]
dx

= −

([
∂tθ
∂tη

]
,

[
τθ 0
0 −τη

] [
∂tθ
∂tη

])
. (5.2)

An equivalent way of expressing this is

−J

[
∂tθ
∂tη

]
= ∇V, J =

[
τθ 0
0 −τη

]
, (5.3)

so that

V̇ =

(
∇V,

[
∂tθ

∂tη

])
= −

([
∂tθ

∂tη

]
, J

[
∂tθ

∂tη

])
. (5.4)

We thus have a gradient system with respect to an indefinite metric.
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5.3 Lyapunov function derivation for the spatially dis-

cretized cubic nonlinearity model

To see how the technique of Brayton and Moser works for ODE systems,

consider the simplest discretization of the cubic nonlinearity model in one

spatial dimension with periodic boundary conditions,

τθ θ̇k = l2
(
θk−1 − 2θk + θk+1

δ2

)
− θ3

k + θk + ηk,

τηη̇k = L2
(
ηk−1 − 2ηk + ηk+1

δ2

)
− ηk − θk + C,

(5.5)

where δ is the distance between the discretized points along the x-axis where

we are evaluating θk and ηk, and the indices k are taken mod N , where 2N

is the total number of ODEs. (The spatially discretized version of the cubic

nonlinearity model satisfies dissipativity bounds analogous to those obtained

in the PDE case. Since the necessary local Lipschitz condition is satisfied, and

the dissipativity bounds preclude finite escape times, existence and uniqueness

of solutions for the spatially discretized system of ODEs is easily established

[44].)

As for the PDE system, we can write this discretized system as a gradient

system with respect to an indefinite metric: let

V =
l2

δ2

(∑
k

θ2
k −

∑
k

θkθk+1

)
+

1

4

∑
k

θ4
k−

1

2

∑
k

θ2
k −

∑
k

θkηk

−
L2

δ2

(∑
k

η2
k −

∑
k

ηkηk+1

)
−

1

2

∑
k

η2
k + C

∑
k

ηk, (5.6)

so that

V̇ =
∑
k

∂V

∂θk
θ̇k +

∑
k

∂V

∂ηk
η̇k

= −
∑
k

[
τθ(θ̇k)

2 − τη(η̇k)
2
]
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= −[θ̇T η̇T ]

[
τθI 0
0 −τηI

] [
θ̇

η̇

]
, (5.7)

where θ = (θ1, ..., θN ), η = (η1, ..., ηN), and I denotes the N × N identity

matrix. As before, we can equivalently express this as

−J

[
θ̇
η̇

]
= ∇V, (5.8)

so that

V̇ = [θ̇T η̇T ]∇V

= −[θ̇T η̇T ]J

[
θ̇
η̇

]
, (5.9)

where

J =

[
τθI 0
0 −τηI

]
. (5.10)

The technique of Brayton and Moser involves first computing D2V , which

looks like

D2V =



∂θ1θ1V · · · ∂θ1θNV ∂θ1η1V · · · ∂θ1ηNV
...

...
...

...
∂θ1θNV · · · ∂θNθNV ∂θNη1V · · · ∂θNηNV
∂θ1η1V · · · ∂θNη1V ∂η1η1V · · · ∂θ1ηNV

...
...

...
...

∂θ1ηNV · · · ∂θNηNV ∂η1ηNV · · · ∂ηNηNV


=

[
P −I
−I Q

]
, (5.11)

where each block is N × N . It turns out not to be necessary to compute P ,

but it is necessary to write down Q and show that Q is invertible. A simple

calculation gives

Q = −

(
I +

L2

δ2
R

)
, (5.12)
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where

R =



2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0

0 −1 2 −1
...

... 0
. . . 0

0
... 2 −1

−1 0 · · · 0 −1 2


. (5.13)

To show that Q is negative definite, and hence invertible, it suffices to show

that R is positive semidefinite. But R can be directly shown to be positive

semidefinite, because if z is any nonzero N-vector, then

zTRz = 2
∑
k

z2
k −

∑
k

zkzk−1 −
∑
k

zkzk+1

=
∑
k

(z2
k − 2zkzk+1 + z2

k+1)

=
∑
k

(zk − zk+1)2

≥ 0. (5.14)

Then defining

M =

[
0 0
0 −2Q−1

]
, (5.15)

we can define

J∗ = J + (D2V )MJ

=

[
τθI 0
0 −τηI

]
+

[
P −I
−I Q

] [
0 0
0 −2Q−1

] [
τθI 0
0 −τηI

]

=

[
τθI 0
0 −τηI

]
+

[
0 −2τηQ

−1

0 2τηI

]

=

[
τθI −2τηQ

−1

0 τηI

]
. (5.16)

Corresponding to this J∗, there is a

V ∗ = V +
1

2
(∇V )TM∇V, (5.17)

such that

−J∗
[
θ̇
η̇

]
= ∇V ∗. (5.18)
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To see this, simply take the gradient of V ∗:

∇V ∗ = ∇V + (D2V )M∇V

= −(J + (D2V )MJ)

[
θ̇
η̇

]

= −J∗
[
θ̇

η̇

]
. (5.19)

If J∗ were symmetric, there would be a well-defined metric, and the

dynamics would be gradient dynamics. However, J∗ is not symmetric. But if

J∗ is positive definite, V ∗ will still be decreasing along trajectories. If we can

further show that V ∗ is radially unbounded and V̇ = 0 if and only if θ̇ = η̇ = 0,

we will be able to conclude that the trajectories of the system converge to the

set of equilibrium points.

As for the positive definiteness of J∗, we have

[θ̇T η̇T ]

[
τθI −2τηQ

−1

0 τηI

] [
θ̇
η̇

]
= τθ|θ̇|

2 + τη|η̇|
2 − 2τη θ̇

TQ−1η̇

=

∣∣∣∣∣√τθ θ̇ − 1
√
α
Q−1(

√
τηη̇)

∣∣∣∣∣
2

+
∣∣∣√τηη̇∣∣∣2 − 1

α

∣∣∣Q−1(
√
τηη̇)

∣∣∣2 , (5.20)

and if
1
√
α
||Q−1|| < 1, (5.21)

then we see that J∗ is positive definite. Furthermore, we can calculate ||Q−1|| =

1 by finding the smallest singular value of−Q, and then inverting it. Observing

that for ||z|| = 1 we have

zT (−Q)z = zT
(
I +

L2

δ2
R

)
z = 1 +

L2

δ2
zTRz, (5.22)

and in light of the fact that R is positive semidefinite and z can be chosen such

that zTRz = 0, it is clear that the smallest singular value of −Q is 1. Hence,
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||Q−1|| = 1, and we arrive at the condition that J∗ is positive definite if

α > 1. (5.23)

Because

V̇ ∗ = −[θ̇T η̇T ]J∗
[
θ̇
η̇

]
, (5.24)

we also see that if J∗ is positive definite, then V̇ ∗ ≤ 0, and V̇ ∗ = 0 if and only

if θ̇ = η̇ = 0.

Next, we need to compute V ∗ and determine that it is radially un-

bounded. We define

∇V ∗ =

[
∇θV

∗

∇ηV
∗

]
, (5.25)

so that ∇θV
∗ represents the gradient of V ∗ with respect to the θk only, and

∇ηV
∗ represents the gradient of V ∗ with respect to the ηk only. Then we can

express V ∗ as

V ∗ = V − (∇ηV )TQ−1∇ηV. (5.26)

Furthermore, we can directly calculate that

∂V

∂ηk
= (−2

L2

δ2
− 1)ηk +

L2

δ2
ηk−1 +

L2

δ2
ηk+1 − θk + C, (5.27)

and hence that

∇ηV = Qη − θ + C


1
1
...
1

 . (5.28)

We thus compute

V ∗ =
l2

δ2

(∑
k

θ2
k −

∑
k

θkθk+1

)
+

1

4

∑
k

θ4
k −

1

2

∑
k

θ2
k

+
L2

δ2

(∑
k

η2
k −

∑
k

ηkηk+1

)
+

1

2

∑
k

η2
k − C

∑
k

ηk (5.29)

+
∑
k

θkηk − (θ − Cγ)TQ−1(θ − Cγ),
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where γ = [1 1 · · · 1]T . We thus arrive at the conclusion that for the dis-

cretized one-dimensional system with periodic boundary conditions, regardless

of the fineness of the discretization (N and δ), as long as α > 1, we can find a

radially unbounded Lyapunov function V ∗ such that V̇ ∗ ≤ 0, and with V̇ ∗ = 0

if and only if θ̇ = η̇ = 0. We can therefore conclude that all trajectories must

converge to the set of equilibrium points, provided α > 1.

If we have Dirichlet or Neumann boundary conditions, similar conclu-

sions can be reached. For Neumann boundary conditions (still in one spatial

dimension), the matrix R becomes

R =



1 −1 0 · · · 0 0
−1 2 −1 0 · · · 0
0 −1 2 −1
...

. . .
...

0 2 −1
0 0 · · · 0 −1 1


(5.30)

This R is also positive semidefinite because

zTRz = z2
1 + z2

N + 2
N−1∑
k=2

z2
k −

N∑
k=2

zkzk−1 −
N−1∑
k=1

zkzk+1

=
N−1∑
k=1

(zk − zk+1)2

≥ 0, (5.31)

for any nonzero vector z. Thus, for Neumann boundary conditions, identical

conclusions are reached as for the periodic boundary condition case.

For Dirichlet boundary conditions, there is a slight difference. The matrix

R becomes

R =



2 −1 0 · · · 0 0
−1 2 −1 0 · · · 0
0 −1 2 −1
...

. . .
...

0 2 −1
0 0 · · · 0 −1 2


, (5.32)
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and this R is actually positive definite. This is because

zTRz = z2
1 + z2

N +
N−1∑
k=1

(zk − zk+1)2 > 0, (5.33)

for any nonzero vector z. However, the smallest eigenvalue of (L2/δ2)R remains

bounded as δ → 0 and N → ∞ with N proportional to 1/δ. Also, as long as

the inhibitor diffusion length L is small compared to the overall system size,

the smallest eigenvalue of (L2/δ2)R will be small. We therefore conclude that

||Q−1|| < 1, but ||Q−1|| ≈ 1. (5.34)

We then arrive at the same condition as before for positive definiteness of J∗,

namely α > 1.

For discretized systems in more than one spatial dimension, the results

for the one-dimensional case carry over, as long as the domain Ω is rectangular.

For example, in two spatial dimensions with periodic boundary conditions, the

simplest discretization would be

τθθ̇jk = l2
(
θj(k+1) + θj(k−1) + θ(j+1)k + θ(j−1)k − 4θjk

δ2

)
− θ3

jk + θjk + ηjk,

τηη̇jk = L2
(
ηj(k+1) + ηj(k−1) + η(j+1)k + η(j−1)k − 4ηjk

δ2

)
− ηjk − θjk + C.

(5.35)

All the same calculations can be performed on this system as in the one-

dimensional case, and the conclusions are the same.

5.4 Convergence result for the spatially discretized cubic

nonlinearity model

With the Lyapunov function V ∗ given by equation (5.29) for the spa-

tially discretized system, we can prove a rigorous convergence result using the

following theorem, proved in [44]:
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Theorem 5.12 (LaSalle’s Invariance Principle) Consider the system ν̇ =

f(ν). Let Σ be a compact set and suppose the solution ν(t) starting in Σ stays

in Σ for all t > 0. Let V ∗ : Σ→ R be a continuous function such that V ∗(ν(t))

is a monotone nonincreasing function of t. Let E be the set of all points in Ω

where V̇ ∗(ν) exists and equals zero. Let M be the largest positively invariant

set in E. Then ν(t) approaches M as t→∞.

Our convergence result is the following:

Theorem 5.13 Assume α = τθ/τη > 1. Then every trajectory of the spa-

tially discretized system (5.5) (corresponding to periodic, Neumann, or Dirich-

let boundary conditions for the original PDE system) converges to the set of

equilibria of the dynamics.

Proof: The existence of the compact invariant set Σ is guaranteed by the

radial unboundedness of V ∗. Also, E = M is simply the set of equilibria of

the dynamics, due to equation (5.24). Applying LaSalle’s invariance principle

completes the proof. 2.

5.5 Lyapunov functional derivation for the cubic nonlin-

earity model

We can generalize the technique of Brayton and Moser to the infinite-

dimensional setting and use it to find a Lyapunov functional for the basic cubic

nonlinearity model.

The first step is to calculate the second derivative of the energy functional

V . We have

V : X → R, (5.36)
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where X represents the space in which the (θ, η) lie. At each p ∈ X, there is

a derivative map,

DVp : X → R

u 7→ DVp · u =
d

dε
V (p + εu)

∣∣∣∣
ε=0
,

(5.37)

which corresponds to the first variation of V evaluated at a particular (θ, η).

By ∇V , we mean

∇V =

[
−l2∆θ + θ3 − θ − η
L2∆η − η − θ + C

]
, (5.38)

for then

DV(θ,η) ·

[
δθ
δη

]
=

∫
Ω
∇V ·

[
δθ
δη

]
dx, (5.39)

where
∫
Ω u·v dx is our inner product. We can then define the second-derivative

map at a point p ∈ X as

D2Vp : X ×X → R

(u,v) 7→
d2

dεdξ
V (p + εu + ξv)

∣∣∣∣
ε=0,ξ=0

.
(5.40)

We can define the second-derivative matrix D2V by

D2V(θ,η) ·

([
δθ1

δη1

]
,

[
δθ2

δη2

])
=
∫

Ω
[δθ1 δη1]D2V

[
δθ2

δη2

]
dx. (5.41)

The second-derivative matrix D2V is computed to be

D2V =

[
(3θ2 − 1− l2∆) −1

−1 (−1 + L2∆)

]
. (5.42)

We thus see that the quantity that plays the role of the matrix Q in the

discretized system is the operator (−1 +L2∆). Therefore, we need to address

the issue of finding an inverse for (−1 + L2∆).

Suppose first that we have periodic boundary conditions. Since the func-

tions (δθ, δη) we are working with are in L2(Ω), their Fourier series are well-
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defined (in the distributional sense):

u(x) =
∑
k

ukeik·x,

uk =
1

|Ω|

∫
Ω
u(x)e−ik·xdx, (5.43)

u(x) ∈ L2(Ω),
∑
k

|uk|
2 <∞.

(Here we are thinking of k as a vector containing indices which are not nec-

essarily integer. For example, in the one-dimensional case, we would have

k = 2πm/L where m is an integer and L = |Ω| is the length of the interval

Ω.) Then

(−1 + L2∆)u(x) = −
∑
k

(1 + L2|k|2)ukeik·x, (5.44)

so the inverse operator for (−1 + L2∆) has the form

(−1 + L2∆)−1v(x) = w(x) ∗ v(x) =
∫

Ω
w(x− y)v(y)dy, (5.45)

where w(x) can be represented as

w(x) =
∑
k

−1

1 + L2|k|2
eik·x. (5.46)

Before we can conclude that we have an appropriate inverse, however, we need

to verify, since (−1+L2∆) takes functions inH2(Ω) to L2(Ω), that w(x)∗· takes

functions in L2(Ω) to H2(Ω). But this is in fact the case, since an equivalent

norm to the H2(Ω) norm is [50]

||u||2 =

(∑
k

|uk|
2
(
1 + |k|2

)2
)1/2

. (5.47)

Thus, from the form of w(x) ∗ ·, it is clear that w(x) ∗ v(x) ∈ H2(Ω) if v(x) ∈

L2(Ω). Thus, we have verified (at least for periodic boundary conditions) that

(−1 + L2∆)−1 : L2(Ω)→ H2(Ω) is a well-defined operator.

Proceeding by analogy with the spatially discretized case, we can com-

pute

V ∗ = V − (∇ηV, (−1 + L2∆)−1∇ηV ), (5.48)
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where

∇ηV = L2∆η − θ − η + C = (−1 + L2∆)η − θ + C. (5.49)

Calculating

(∇ηV, (−1 + L2∆)−1∇ηV )

=
∫

Ω

[
(−1 + L2∆)η − θ + C

] [
(−1 + L2∆)−1

[
(−1 + L2∆)η − θ + C

]]
dx

=
∫

Ω

[
(−1 + L2∆)η − θ + C

] [
η + (−1 + L2∆)−1(−θ + C)

]
dx

=
∫

Ω

[
η(−1 + L2∆)η − θη + Cη + [(−1 + L2∆)η][(−1 + L2∆)−1(−θ + C)]

+(−θ + C)[(−1 + L2∆)−1(−θ + C)]
]
dx

=
∫

Ω

[
−L2|∇η|2 − η2 − θη + Cη + η[(−1 + L2∆)(−1 + L2∆)−1(−θ + C)]

+(−θ + C)[(−1 + L2∆)−1(−θ + C)]
]
dx

=
∫

Ω

[
−L2|∇η|2 − η2 − 2θη + 2Cη − (−θ + C)[(−1 + L2∆)−1(−θ + C)

]
dx,

(5.50)

where integration by parts has been used (with the assumption of periodic

boundary conditions), we finally obtain

V ∗ =
∫

Ω

[
l2

2
|∇θ|2 +

1

4
θ4 −

1

2
θ2 +

L2

2
|∇η|2 +

1

2
η2 − Cη + θη

−(θ − C)[(−1 + L2∆)−1(θ − C)]
]
dx. (5.51)

From this expression for V ∗, it is apparent that V ∗ is radially unbounded.

It now remains to determine ∇V ∗, so that we can check whether (or

under what conditions) V̇ ∗ ≤ 0, with V̇ ∗ = 0 if and only if ∂tθ = ∂tη = 0.

The only term of V ∗ for which we have not yet computed the first variation is

the (−θ + C)[(−1 + L2∆)−1(−θ + C)] term. Using the representation (−1 +

L2∆)−1· = w ∗ ·, we compute

δ

δθ

[∫
Ω

(−θ + C)[(−1 + L2∆)−1(−θ + C)]dx
]
· u

=
∫

Ω
2[(−1 + L2∆)−1(−θ + C)]udx. (5.52)
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Therefore, we have

∇θV
∗ = −l2∆θ + θ3 − θ + η + 2(−1 + L2∆)−1(−θ + C)

= −τθ∂tθ + 2[η + (−1 + L2∆)−1(−θ + C)], (5.53)

∇ηV
∗ = −L2∆η + η + θ − C = −τη∂tη.

Observing that

2τη(−1 + L2∆)−1∂tη = 2(−1 + L2∆)−1(L2∆η − η − θ + C)

= 2[η + (−1 + L2∆)−1(−θ + C)], (5.54)

we conclude that ∇V ∗ can be expressed as

∇V ∗ = −

[
τθ −2τη(−1 + L2∆)−1

0 τη

] [
∂tθ
∂tη

]
. (5.55)

Therefore

V̇ ∗ = −
∫

Ω
[∂tθ ∂tη]

[
τθ −2τη(−1 + L2∆)−1

0 τη

] [
∂tθ
∂tη

]
dx

= −
∫

Ω

[(√
τθ∂tθ −

1
√
α

(−1 + L2∆)−1(
√
τη∂tη)

)2

+ (
√
τη∂tη)2

−
1

α

(
(−1 + L2∆)−1(

√
τη∂tη)

)2
]
dx. (5.56)

Thus, the sufficient condition for V̇ ∗ ≤ 0 is

1
√
α
||(−1 + L2∆)−1|| < 1, (5.57)

where we are using the operator norm for ||(−1 + L2∆)−1|| defined by

||(−1 + L2∆)−1|| = sup
u∈U
||(−1 + L2∆)−1u||L2(Ω), U =

{
u : ||u||L2(Ω) = 1

}
.

(5.58)

Since the eigenvalues of (1 − L2∆) are (1 + L2|k|2), and the eigenvalues of

(1−L2∆)−1are 1/(1 +L2|k|2), with k = 0 an admissible eigenvalue, it follows
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as in the discretized case that ||(−1 +L2∆)−1|| = 1, and we arrive at the same

sufficient condition for V̇ ∗ ≤ 0, namely

α > 1. (5.59)

Thus, for periodic boundary conditions, we see that in analogy with the spa-

tially discretized case, if α > 1 then there is a radially unbounded Lyapunov

functional V ∗ such that V̇ ∗ ≤ 0, and with V̇ ∗ = 0 only at equilibria of the

dynamics.

For Dirichlet or Neumann boundary conditions, we need to assume that

the boundary of Ω is C2 (so that we have the necessary second-derivative

bounds required for calculating the variations of V and V ∗), and we need to

use Fourier transform techniques instead of Fourier series techniques. As in the

Fourier series case, since we are working with functions in L2(Ω), the Fourier

transform is well-defined (in the distributional sense):

u(x) =
1

(2π)n/2

∫
Rn û(ω)eiω·xdω,

û(ω) =
1

(2π)n/2

∫
Ω
u(x)e−iω·xdx, (5.60)

u(x) ∈ L2(Ω), û(ω) ∈ L2(Rn).

Then

(−1 + L2∆)u(x) = −
1

(2π)n/2

∫
Rn(1 + L2|ω|2)û(ω)eiω·xdω, (5.61)

so the inverse operator for (−1 + L2∆) has the form

(−1 + L2∆)−1v(x) = w(x) ∗ v(x) =
∫

Ω
w(x− y)v(y)dy, (5.62)

where w(x) can be represented as

w(x) =
1

(2π)n/2

∫
Rn

−1

1 + L2|ω|2
eiω·xdω. (5.63)
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Since an equivalent norm to the H2(Ω) norm is

||u||2 =

(
1

(2π)n/2

∫
Rn(û(ω))2

(
1 + L2|ω|2

)2
dω

)1/2

, (5.64)

it is clear that just as in the Fourier series case, w(x) ∗ v(x) ∈ H2(Ω) if

v(x) ∈ L2(Ω) [50].

The expression for V ∗ is then identical to what it was in the Fourier series

case, and the rest of the calculations go through just as before. For Dirichlet

boundary conditions, the operator norm ||(−1 + L2∆)−1|| turns out to be

less than one instead of equal to one, for the same reason as in the spatially

discretized case with Dirichlet boundary conditions (i.e., ω = 0 is not an

eigenvalue). But if L is small compared to the size of the system, we will have

||(−1 + L2∆)−1|| ≈ 1. For the Neumann case, in analogy with the spatially

discretized system, we obtain ||(−1 + L2∆)−1|| = 1. Thus, for Dirichlet or

Neumann boundary conditions, if α > 1, we have the same conclusion as

before, that V̇ ∗ ≤ 0, with V̇ ∗ = 0 only at equilibria.

So to summarize, whether we have periodic, Dirichlet, or Neumann

boundary conditions, as long as α > 1, we can find a Lyapunov functional V ∗

which is radially unbounded and has the property that V̇ ∗ ≤ 0, with V̇ ∗ = 0

only at equilibrium points of the dynamics.

5.6 Generalizations of the basic Lyapunov functional

5.6.1 Cubic nonlinearity model with additional symmetric long-range

coupling

The basic cubic nonlinearity model with additional symmetric long-range

coupling is
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τθ∂tθ = l2∆θ − θ3 + θ + η + z ∗ θ,

τη∂tη = L2∆η − η − θ + C,
(5.65)

where z is symmetric about the origin, and the operator norm of z∗· is bounded:

∃ρz > 0 such that ||z ∗ θ||L2(Ω) ≤ ρz||θ||L2(Ω), ∀θ ∈ L
2(Ω). (5.66)

(For periodic boundary conditions, the convolution operation is interpreted as

cyclic convolution.)

This system has the Lyapunov functional

V ∗ =
∫

Ω

[
l2

2
|∇θ|2 +

1

4
θ4 −

1

2
θ2 −

1

2
θ(z ∗ θ) +

L2

2
|∇η|2 +

1

2
η2 − Cη + θη

−(θ − C)[(−1 + L2∆)−1(θ − C)]
]
dx, (5.67)

for α = τθ/τη > 1. The additional convolution term does not change the radial

unboundedness property of V ∗, because it is dominated by the θ4 term.

5.6.2 Complex activator-inhibitor equation

The Lyapunov functional for the basic cubic nonlinearity model general-

izes to the complex activator-inhibitor equation

τθ∂tθ = l2∆θ − |θ|2θ + θ + η,

τη∂tη = L2∆η − η − θ + C,
(5.68)

where θ, η, and C are complex. The pair of complex activator-inhibitor equa-

tions can be written as two systems of real activator-inhibitor equations with

nonlinear coupling between the two activator equations:
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τθ∂tθR = l2∆θR − (θ2
R + θ2

I)θR + θR + ηR,

τθ∂tθI = l2∆θI − (θ2
R + θ2

I )θI + θI + ηI ,

τη∂tηR = L2∆ηR − ηR − θR + CR,

τη∂tηI = L2∆ηI − ηI − θI + CI ,

(5.69)

where θR = Re{θ}, θI = Im{θ}, ηR = Re{η}, and ηI = Im{η}.

The Lyapunov functional for the complex activator-inhibitor equation

(expressed as in equation (5.69)) is

V ∗ =
∫

Ω

[
l2

2

(
|∇θR|

2 + |∇θI |
2
)

+
1

4

(
θ4
R + 2θ2

Rθ
2
I + θ4

I

)
−

1

2

(
θ2
R + θ2

I

)

+
L2

2

(
|∇ηR|

2 + |∇ηI |
2
)

+
1

2

(
η2
R + η2

I

)
− (CRηR + CIηI)

+(θRηR + θIηI)− (θR − CR)
[
(−1 + L2∆)−1(θR − CR)

]
−(θI − CI)

[
(−1 + L2∆)−1(θI − CI)

] ]
dx.

(5.70)

This Lyapunov functional can be written in terms of the complex variables θ,

η, and C, as

V ∗ =
∫

Ω

[
l2

2
|∇θ|2 +

1

4
|θ|4 −

1

2
|θ|2 +

L2

2
|∇η|2 +

1

2
|η|2 − Re{Cη}+ Re{θη}

−(θ − C)
[
(−1 + L2∆)−1(θ − C)

] ]
dx, (5.71)

where the overbar denotes complex conjugation. Using V ∗ in the real variable

form, we can compute V̇ ∗ using

V̇ ∗ =
δV ∗

δθR
· (∂tθR) +

δV ∗

δθI
· (∂tθI) +

δV ∗

δηR
· (∂tηR) +

δV ∗

δηI
· (∂tηI), (5.72)

which gives
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V̇ ∗ =

−
∫

Ω


∂tθR
∂tθI
∂tηR
∂tηI


T

τθ 0 −2τη(−1 + L2∆)−1 0
0 τθ 0 −2τη(−1 + L2∆)−1

0 0 τη 0
0 0 0 τη



∂tθR
∂tθI
∂tηR
∂tηI

dx.
(5.73)

When α = τθ/τη > 1, we can conclude that V̇ ∗ ≤ 0, and V̇ ∗ = 0 only at

equilibria. Since V ∗ is radially unbounded, it serves as a Lyapunov functional

provided α > 1.

5.6.3 Bounded nonlinearity model

The bounded nonlinearity model,

τθ∂tθ = l2∆θ − f(θ) + η,

τη∂tη = L2∆η − η − θ + C,
(5.74)

where f is continuous and ∀θ, |f(θ)| < M for some M > 0, has a Lyapunov

functional if we further restrict f . Assume that f can be decomposed as

f(θ) = f1(θ) + f2(θ), (5.75)

where

f1(θ) = 0, ∀θ ∈ (−∞,−a) ∪ (a,∞) for some a > 0,

θf2(θ) > 0, ∀θ 6= 0,
(5.76)

and both f1 and f2 are continuous. Define

g1(θ) =
∫ θ

−a
f1(ξ)dξ,

g2(θ) =
∫ θ

0
f2(ξ)dξ.

(5.77)
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Then the Lyapunov functional is

V ∗ =
∫

Ω

[
l2

2
|∇θ|2 + g1(θ) + g2(θ) +

L2

2
|∇η|2 +

1

2
η2 − Cη + θη

−(θ − C)[(−1 + L2∆)−1(θ − C)]
]
dx. (5.78)

What we need to check is that V ∗ is radially unbounded. If we can show

that the energy functional

V ∗f=0 =
∫

Ω

[
l2

2
|∇θ|2 +

L2

2
|∇η|2 +

1

2
η2 − Cη + θη

−(θ − C)[(−1 + L2∆)−1(θ − C)]
]
dx (5.79)

is radially unbounded, then since g1 is bounded and ∀θ, g2(θ) ≥ 0, it will follow

that V ∗ is also radially unbounded. Let

θ =
∑
k

θkeik·x,

η =
∑
k

ηkeik·x
(5.80)

be the Fourier series representations of θ and η. We have

1

|Ω|

∫
Ω
|η|2dx =

∑
k

|ηk|
2,

1

|Ω|

∫
Ω
θηdx =

1

|Ω|

∫
Ω

(∑
k

θke−ik·x
)(∑

k

ηkeik·x
)
dx =

∑
k

θkηk,

1

|Ω|

∫
Ω
|∇θ|2dx =

1

|Ω|

∫
Ω

∣∣∣∣∑
k

ikθkeik·x
∣∣∣∣2dx =

∑
k

|k|2|θk|
2,

1

|Ω|

∫
Ω
|∇η|2dx =

∑
k

|k|2|ηk|
2. (5.81)

The (−1 + L2∆)−1 term can be analyzed also using Fourier methods:

−1 + L2∆ ↔ −1− L2|k|2,

(−1 + L2∆)−1 ↔
−1

1 + L2|k|2
,

−
1

|Ω|

∫
Ω

(θ − C)[(−1 + L2∆)−1(θ − C)]dx =
∑
k6=0

1

1 + L2|k|2
|θk|

2 + (θ0 − C)2.

(5.82)
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We thus have

1

|Ω|
V ∗f=0 =

∑
k6=0

[
l2

2
|k|2|θk|

2 +
L2

2
|k|2|ηk|

2 +
1

2
|ηk|

2 − Cηkeik·x + θkηk

+
1

1 + L2|k|2
|θk|

2
]

+
1

2
η2

0 − Cη0 + θ0η0 + (θ0 − C)2

=
∑
k6=0

[
l2

2
|k|2|θk|

2 +
1

4
(1 + L2|k|2)|ηk|

2 − Cηkeik·x

+

∣∣∣∣∣ 1√
1 + L2|k|2

θk +

√
1 + L2|k|2

2
ηk

∣∣∣∣∣
2]

+
1

6
η2

0 − Cη0 +
1

4
θ2
0 − 2Cθ0 + C2 +

(√
3

2
θ0 +

1
√

3
η0

)2

. (5.83)

Thus V ∗f=0 is radially unbounded, and hence so is V ∗ given by equation (5.78).

5.6.4 Active transmission line (with inhibitor diffusion and dissipa-

tion)

The active transmission line dynamics (with inhibitor diffusion and dis-

sipation) are

τθ∂tθ = l2∂xxθ − θ
3 + θ − C − ∂xη,

τη∂tη = L2∂xxη − η − ∂xθ,
(5.84)

The energy functional for which the active transmission line dynamics are gra-

dient dynamics is

V =
∫

Ω

[
l2

2
(∂xθ)

2 +
1

4
θ4 −

1

2
θ2 + Cθ −

L2

2
(∂xη)2 −

1

2
η2 + θ∂xη

]
dx. (5.85)

For periodic (or Dirichlet) boundary conditions,

∫
Ω
θ∂xη dx = −

∫
Ω
η∂xθ dx, (5.86)

so as was the case for the basic cubic nonlinearity model, the active transmis-

sion line dynamics are gradient with respect to an indefinite metric.
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In analogy with the Lyapunov functional derivation for the basic cubic

nonlinearity model, we compute

(∇ηV, (−1 + L2∂xx)
−1∇ηV )

=
∫

Ω
[(−1 + L2∂xx)η − ∂xθ][(−1 + L2∂xx)

−1((−1 + L2∂xx)η − ∂xθ)]dx

=
∫

Ω
[η(−1 + L2∂xx)η − η∂xθ + [(−1 + L2∂xx)η][(−1 + L2∂xx)

−1(−∂xθ)]

+(−∂xθ)[(−1 + L2∂xx)
−1(−∂xθ)]]dx

=
∫

Ω

[
η(−1 + L2∂xx)η − 2η∂xθ + (∂xθ)[(−1 + L2∂xx)

−1(∂xθ)]
]
dx, (5.87)

where integration by parts has been used (with the assumption of periodic

boundary conditions), thus obtaining

V ∗ =
∫

Ω

[
l2

2
(∂xθ)

2 +
1

4
θ4 −

1

2
θ2 + Cθ +

L2

2
(∂xη)2 +

1

2
η2 + η∂xθ

−(∂xθ)[(−1 + L2∂xx)
−1(∂xθ)]

]
dx. (5.88)

This energy functional is radially unbounded. Furthermore,

∇V ∗ = −

[
τθ 2τη∂x(−1 + L2∂xx)

−1

0 τη

] [
∂tθ
∂tη

]
, (5.89)

and

V̇ ∗ = −
∫

Ω
[∂tθ ∂tη]

[
τθ 2τη∂x(−1 + L2∂xx)

−1

0 τη

] [
∂tθ
∂tη

]
dx

= −
∫

Ω

[
τθ(∂tθ)

2 + τη(∂tη)2 + (∂tθ)2τη
[
∂x(−1 + L2∂xx)

−1
]

(∂tη)
]
dx

= −
∫

Ω

[(√
τθ∂tθ +

1
√
α
∂x(−1 + L2∂xx)

−1(
√
τη∂tη)

)2

+ (
√
τη∂tη)2

−
1

α

[
∂x(−1 + L2∂xx)

−1(
√
τη∂tη)

]2 ]
dx. (5.90)

To determine the parameter values for which V ∗ decreases along trajectories,

we need to determine the operator norm of ∂x(−1 + L2∂xx)
−1. Using Fourier

series, we have

u(x) =
∑
k

uke
ikx,
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∂x(−1 + L2∂xx)
−1u(x) = ∂x(−1 + L2∂xx)

−1
∑
k

uke
ikx,

= ∂x
∑
k

−1

1 + L2k2
uke

ikx,

=
∑
k

−ik

1 + L2k2
uke

ikx. (5.91)

The operator norm is then

max
k

∣∣∣∣∣ −ik1 + L2k2

∣∣∣∣∣ = max
k

k

1 + L2k2
=

1

2L
, (5.92)

and the maximum occurs for k = 1/L. So for V̇ ∗ ≤ 0, we need

α >
1

2L
. (5.93)

Thus, for α = τθ/τη >
1

2L
, we have a radially unbounded Lyapunov functional

V ∗ satisfying V̇ ∗ ≤ 0, and with V̇ ∗ = 0 only at equilibria. The existence

of a Lyapunov functional for the transmission line system indicates that the

dissipative character dominates the transmission-line character when α > 1
2L

.

If for fixed α we let L tend toward zero, then V ∗ loses its property of having

V̇ ∗ ≥ 0, and so ceases to be a Lyapunov functional.

5.6.5 Spatially-varying coefficients

In deriving the Lyapunov functional for the basic cubic nonlinearity

model, we assumed constant coefficients τθ, τη, l, L and C. However, as long as

l and L are constant, the other coefficients, τθ, τη, and C, can be functions of

x. In particular, thinking of C as a control input and taking it to be a function

of x (and a slowly-varying function of time so that the system responds qua-

sistatically) is one technique for exciting interesting (i.e., spatially nonuniform)

equilibirium solutions. The same comments about spatially-varying coefficients

also apply to the other generalizations of the Lyapunov functional.
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Chapter 6

Analyzing Equilibria Using Lyapunov Function-

als

6.1 Introduction

There are a couple of ways to try to use Lyapunov functionals for analyz-

ing the stability of equilibria. One approach is to evaluate the Lyapunov func-

tional for different equilibrium solutions. An equilibrium solution with a lower

value for the Lyapunov functional is energetically favorable compared with

a different equilibrium solution having a higher Lyapunov functional value.

A second approach is to perturb the dynamical equations about a particular

equilibrium solution, write down the Lyapunov functional for the perturbed

dynamics, examine the lowest-order (i.e., quadratic) terms, and thereby assess

whether or not the equilibrium solution is stable with respect to linear per-

turbations. Such an approach works in general for assessing the stability of

spatially uniform equilibria, and also works for assessing the stability of the

ideal helical pattern solution for the complex activator-inhibitor equation in

one space dimension with C = 0.

We would like to be able to argue that energetically favorable equilib-

rium solutions are in fact stable. For the spatially discretized systems of ODEs

possessing Lyapunov functions, if we could show that a spatially nonuniform

equilibrium was energetically favorable compared with the spatially uniform

equilibrium, we would be tempted to conclude that there must be some sta-

ble spatially nonuniform equilibrium (not necessarily the one shown to have

lower energy than the spatially uniform equilibrium, although that one would
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be a good candidate). Under these circumstances, if the spatially nonuniform

equilibria were isolated, we would be able to conclude that some spatially

nonuniform equilibrium was indeed stable. However, the spatially nonuniform

equilibria are not isolated equilibria, since with periodic boundary conditions,

any spatial translation of a given equilibrium solution is also an equilibrium

solution. What LaSalle’s invariance principle does imply for our spatially dis-

cretized systems is that trajectories that enter into a given sublevel set of the

Lyapunov function must converge to the set of equilibria contained in that

sublevel set. Although even in the finite-dimensional case we cannot make as

strong statements about stability as we would like, the concept of energeti-

cally favorable equilibria is still important, and will be illustrated numerically.

The other approach, perturbing the dynamical equations about a particular

equilibrium solution, writing down the Lyapunov functional for the perturbed

dynamics, and then assessing the stability of the equilibrium with respect to

linear perturbations, will be illustrated analytically.

Another benefit of having a Lyapunov functional is that we can show

for the complex activator-inhibitor equation in one space dimension that the

modal dynamics for any finite number of modes possesses a Lyapunov func-

tion. Furthermore, we can show that a finite number of modal coefficients are

sufficient to achieve any L2(Ω) error tolerance in approximating an equilibrium

solution. These results also carry over to the real cubic nonlinearity model.

6.2 Form of the Lyapunov functional at equilibria

6.2.1 Basic cubic nonlinearity model

Recall the dynamics and Lyapunov functional for the basic cubic nonlin-
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earity model:

τθ∂tθ = l2∆θ − θ3 + θ + η,

τη∂tη = L2∆η − η − θ + C, (6.1)

V ∗ =
∫

Ω

[
l2

2
|∇θ|2 +

1

4
θ4 −

1

2
θ2 +

L2

2
|∇η|2 +

1

2
η2 − Cη + θη

−(θ − C)[(−1 + L2∆)−1(θ − C)]
]
dx.

For equilibria, we have

0 = L2∆η − η − θ + C,

(−1 + L2∆)η = θ − C,

η = (−1 + L2∆)−1(θ − C), (6.2)

so that the Lyapunov functional reduces to

V ∗e =
∫

Ω

[
l2

2
|∇θ|2 +

1

4
θ4 −

1

2
θ2 +

L2

2
|∇η|2 +

1

2
η2
]
dx. (6.3)

This is the Lyapunov functional for the decoupled θ and η dynamics with

C = 0. Furthermore, multiplying the ∂tθ equation through by θ, the ∂tη

equation through by η, summing the equations, and integrating over Ω yields

the identity ∫
Ω

[
l2|∇θ|2 + θ4 − θ2 + L2|∇η|2 + η2 − Cη

]
dx = 0. (6.4)

Using this identity, we can eliminate the derivative operators from V ∗e :

V ∗e =
∫

Ω

[
−

1

4
θ4 +

1

2
Cη
]
dx. (6.5)

We can use the equilibrium equation

0 = L2∆η − θ − η + C, (6.6)

and use the fact that, for periodic or Neumann boundary conditions, the di-

vergence theorem implies ∫
Ω

∆ηdx = 0, (6.7)
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to conclude that

V ∗e =
∫

Ω

[
−

1

4
θ4 −

1

2
Cθ +

1

2
C2
]
dx. (6.8)

We see from this expression for V ∗e that it is energetically favorable for θ to

have the greatest possible absolute value, and for θ to have the same sign as

C. If C = 0, then it is energetically favorable to maximize |θ|, and a spatially

periodic pattern equilibrium is stable. If |C| is large, then it is energetically

favorable to maximize |θ| so that C and θ have the same sign, which leads to a

stable spatially uniform equilibrium. For intermediate values of C, numerical

analysis indicates that spike solutions can have lower energy than a competing

stable spatially uniform equilibrium, provided β = l/L is sufficiently small.

This is because spike solutions can have lower energy density outside of the

transition regions to make up for having a higher energy density within the

transition regions. As the width of transition regions becomes small (i.e., for

β << 1), the contribution of the transition regions to the energy density also

becomes small. This will be illustrated numerically for the discretized cubic

nonlinearity model later on.

For the cubic nonlinearity model with additional symmetric long-range

coupling, V ∗e takes exactly the same form as for the basic cubic nonlinearity

model. For the bounded nonlinearity model, a different expression for V ∗e is

obtained, but it still can be written in a form that depends only on θ (and not

on η, ∇θ, or ∇η). The active transmission line (with inhibitor diffusion and

dissipation) has

V ∗e =
∫

Ω

[
−

1

4
θ4 +

1

2
Cθ

]
dx, (6.9)

since C appears in the ∂tθ equation instead of in the ∂tη equation.
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6.2.2 Complex activator-inhibitor equation

Recall that the complex activator-inhibitor equation could be written as

a pair of nonlinearly coupled real activator-inhibitor equations,

τθ∂tθR = l2∆θR − (θ2
R + θ2

I)θR + θR + ηR,

τθ∂tθI = l2∆θI − (θ2
R + θ2

I )θI + θI + ηI ,

τη∂tηR = L2∆ηR − ηR − θR + CR,

τη∂tηI = L2∆ηI − ηI − θI + CI .

(6.10)

In analogy to the basic cubic nonlinearity model, for equilibria, V ∗ in the

(θR, θI , ηR, ηI) variables reduces to

V ∗e =
∫

Ω

[
l2

2

(
|∇θR|

2 + |∇θI |
2
)

+
1

4

(
θ4
R + 2θ2

Rθ
2
I + θ4

I

)
−

1

2

(
θ2
R + θ2

I

)
+
L2

2

(
|∇ηR|

2 + |∇ηI|
2
)

+
1

2

(
η2
R + η2

I

) ]
dx. (6.11)

Furthermore, multiplying the ∂tθR equation through by θR, etc., summing all

four equations, and integrating, yields the identity∫
Ω

[
l2
(
|∇θR|

2 + |∇θI |
2
)

+
(
θ4
R + 2θ2

Rθ
2
I + θ4

I

)
−
(
θ2
R + θ2

I

)
+L2

(
|∇ηR|

2 + |∇ηI|
2
)

+
(
η2
R + η2

I

)
− (CRηR + CIηI)

]
dx = 0,

(6.12)

at equilibria. Combining these expressions gives

V ∗e =
∫

Ω

[
−

1

4

(
θ4
R + 2θ2

Rθ
2
I + θ4

I

)
+

1

2
(CRηR + CIηI)

]
dx. (6.13)

Using the equilibrium equations and divergence theorem (for periodic or Neu-

mann boundary conditions) then gives

V ∗e =
∫

Ω

[
−

1

4

(
θ4
R + 2θ2

Rθ
2
I + θ4

I

)
−

1

2
(CRθR +CIθI) +

1

2
(C2

R +C2
I )
]
dx. (6.14)

In the complex variables, V ∗e takes the form

V ∗e =
∫

Ω

[
−

1

4
|θ|4 −

1

2
Re{Cθ} +

1

2
|C|2

]
dx. (6.15)
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We see from this expression that it is energetically favorable for θ to have the

greatest magnitude possible and for θ to be aligned with C. (The (1/2)|C|2

term is simply an additive constant to the Lyapunov functional and can there-

fore be ignored.) If C = 0, then it is clearly energetically favorable to simply

maximize the magnitude of the activator. If |C| is very large, it is energetically

favorable to align the activator with C. However, for intermediate values of

|C|, there is a tradeoff between maximizing |θ| and aligning θ with C.

6.3 Stability analysis for spatially uniform equilibria

6.3.1 Basic cubic nonlinearity model

It is possible to analyze the stability of spatially uniform equilibria of

activator-inhibitor equations by linearizing the dynamics [9, 29]. This lin-

earization was carried out in chapter 2, and yielded formulas for the critical

wave number,

k0 =

(
(∂θq)(∂ηQ)− (∂θQ)(∂ηq)

l2L2

)1/4

, (6.16)

and the point at which the bifurcation to a pattern equilibrium occurs,

∂θq = −β2∂ηQ− 2β[(∂θq)(∂ηQ)− (∂θQ)(∂ηq)]
1/2, (6.17)

under the assumption that the system is a K-system. For the cubic nonlinear-

ity model, we have

q(θ, η, C) = θ3 − θ − η,

Q(θ, η, C) = η + θ − C.
(6.18)

We thus compute

∂θq = 3θ2 − 1, ∂ηQ = 1,

∂θQ = 1, ∂ηq = −1.
(6.19)

At equilibrium, we have q(θ, η, C) = Q(θ, η, C) = 0, from which it follows that
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θ = C1/3,

η = C − C1/3.
(6.20)

Thus, at the bifurcation point,

3θ2 − 1 = −β2 − 2β(3θ2 − 1 + 1)1/2,

3|θ|2 − 1 = −β2 − 2
√

3β|θ|,

(
√

3|θ|+ β)2 = 1,

√
3|θ|+ β = 1,

θ =
1
√

3
(1− β),

C =
1

3
√

3
(1− β)3, (6.21)

and

k0 =

(
3(C1/3)2

l2L2

)1/4

=
((1− β)2)1/4

√
lL

=

√
1− β
√
lL

. (6.22)

The direct linearization approach required the assumption that the sys-

tem was a K-system, and also required the derivation of formulas (6.16) and

(6.17). Since we have a Lyapunov functional, we know in advance that for

α > 1, the system is a K-system. For the spatially discretized system of

ODEs, we could perform a second-derivative test using the Lyapunov function

to assess stability of the spatially uniform equilibria. We use an analogous ap-

proach for the PDE system. Our approach is to write the (nonlinear) dynam-

ics for perturbations about the spatially uniform equilibrium of interest, write

down a Lyapunov functional for the perturbed dynamics, drop the higher-order

terms from the Lyapunov functional, plug in Fourier series representations of

the perturbed variables, and finally, determine whether the Lyapunov func-

tional is positive definite in the Fourier coefficients. In other words, we are

using the Lyapunov functional to assess the stability of the spatially uniform
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equilibrium with respect to linear perturbations. (This is basically the same

procedure used later to assess the stability of helical equilibria for the complex

activator-inhibitor equation when C = 0. Applying the procedure to the basic

cubic nonlinearity model illustrates the technique on a simpler system.)

Let δθ and δη denote the perturbed variables, i.e.,

θ = C1/3 + δθ,

η = C − C1/3 + δη.
(6.23)

The dynamics for δθ and δη are then

τθ∂tδθ = l2∆δθ − δθ3 − 3δθ2C1/3 − 3δθC2/3 + δθ + δη,

τη∂tδη = L2∆δη − δη − δθ,
(6.24)

and the corresponding Lyapunov functional is

V ∗p =
∫

Ω

[
l2

2
|∇δθ|2 +

1

4
δθ4 + C1/3δθ3 +

3

2
C2/3δθ2 −

1

2
δθ2 +

L2

2
|∇δη|2

+
1

2
δη2 + δθδη − (δθ)[(−1 + L2∆)−1(δθ)]

]
dx. (6.25)

Retaining only the quadratic terms of V ∗p , we obtain

V ∗q =
∫

Ω

[
l2

2
|∇δθ|2 +

1

2
(3C2/3 − 1)δθ2 +

L2

2
|∇δη|2 +

1

2
δη2 + δθδη

−(δθ)[(−1 + L2∆)−1(δθ)]
]
dx, (6.26)

where the subscript “q” is used because this Lyapunov functional is quadratic.

Next, we assume periodic boundary conditions and define the Fourier

series

δθ =
∑
k

δθke
ik·x,

δη =
∑
k

δηke
ik·x.

(6.27)
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Using the identities (calculated as in chapter 5),

1

|Ω|

∫
Ω
|δθ|2dx =

∑
k

|δθk|
2,

1

|Ω|

∫
Ω
|δη|2dx =

∑
k

|δηk|
2,

1

|Ω|

∫
Ω
δθδηdx =

∑
k

δθkδηk,

1

|Ω|

∫
Ω
|∇δθ|2dx =

∑
k

|k|2|δθk|
2,

1

|Ω|

∫
Ω
|∇δη|2dx =

∑
k

|k|2|δηk|
2,

−
1

|Ω|

∫
Ω

(δθ)[(−1 + L2∆)−1(δθ)]dx =
∑
k

1

1 + L2|k|2
|δθk|

2, (6.28)

we have

1

|Ω|
V ∗q =

∑
k

[
l2

2
|k|2 +

1

2
(3C2/3 − 1) +

1

1 + L2|k|2

]
|δθk|

2

+
1

2
(1 + L2|k|2)|ηk|

2 + δθkδηk

=
∑
k

1

2

[
l2|k|2 + (3C2/3 − 1) +

1

1 + L2|k|2

]
|δθk|

2

+
1

2

∣∣∣∣∣∣ 1√
1 + L2|k|2

δθk +
√

1 + L2|k|2δηk

∣∣∣∣∣∣
2

. (6.29)

It is easily shown that

l2|k|2 +
1

1 + L2|k|2
≥ −β2 + 2β, (6.30)

and this leads to the stability criterion

|C| ≥
1

3
√

3
(1− β)3, (6.31)

the same stability criterion for C that arises in the direct linearization of the

dynamics. The critical wave number also agrees with that given by direct

linearization, namely k0 =
√

1− β/
√
lL.
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6.3.2 Active transmission line (with inhibitor diffusion and dissipa-

tion)

The equation for the spatially uniform activator equilibrium is cubic,

θ3 − θ + C = 0, (6.32)

and so it can be solved for θ using the following formulas:

A =

−C
2

+

√
C2

4
−

1

27

1/3

,

B =

−C
2
−

√
C2

4
−

1

27

1/3

,

θ = A+B, −
A+B

2
+

(A−B)

2

√
−3, −

A+B

2
−

(A−B)

2

√
−3. (6.33)

If √
C2

4
−

1

27
(6.34)

is positive, there is one real root; if it is zero, there is a simple real root and a

double real root; and if it is negative, there are three unequal real roots.

Denote the spatially uniform equilibrium value of θ by θ̂ and perturb the

dynamics about the spatially uniform equilibrium:

θ = θ̂ + δθ,

η = δη.
(6.35)

The perturbed dynamics are

τθ∂tδθ = l2∂xxδθ − (δθ)3 − 3θ̂2δθ − 3θ̂(δθ)2 + δθ − ∂xδη,

τη∂tδη = L2∂xxδη − δη − ∂xδθ.
(6.36)

The Lyapunov functional for this perturbed system is

V ∗p =
∫

Ω

[
l2

2
|∂xδθ|

2 +
1

4
δθ4 +

3

2
θ̂2δθ2 + θ̂δθ3 −

1

2
δθ2 +

L2

2
|∂xδη|

2

+
1

2
δη2 + δη∂xδθ − (∂xδθ)[(−1 + L2∂xx)

−1(∂xδθ)]
]
dx, (6.37)
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and retaining only the quadratic part, we obtain

V ∗q =
∫

Ω

[
l2

2
|∂xδθ|

2 +
1

2
(3θ̂2 − 1)δθ2 +

L2

2
|∂xδη|

2 +
1

2
δη2 + δη∂xδθ

−(∂xδθ)[(−1 + L2∂2
xx)
−1(∂xδθ)]

]
dx, (6.38)

Using the Fourier series representations,

δθ =
∑
k

δθke
ikx,

δη =
∑
k

δηke
ikx,

(6.39)

we have the same identities as in the previous subsection, and also

1

|Ω|

∫
Ω
δη∂xδθdx =

1

|Ω|

∫
Ω

(∑
k

δηke
ikx

)(∑
k

ikδθke
ikx

)
dx

=
∑
k

ikδηkδθk,

−
1

|Ω|

∫
Ω

(∂xδθ)[(−1 + L2∂xx)
−1(∂xδθ)]dx

=
1

|Ω|

∫
Ω

(∑
k

ikδθke
ikx

)
1

1 + L2k2

(∑
k

ikδθke
ikx

)
dx

=
∑
k

k2

1 + L2k2
|δθk|

2. (6.40)

We then obtain

1

|Ω|
V ∗q =

∑
k

[
l2k2

2
+

1

2
(3θ̂2 − 1) +

k2

1 + L2k2

]
|δθk|

2 +

[
L2k2

2
+

1

2

]
|δηk|

2

+ikδηkδθk

=
∑
k

1

2

[
l2k2 + 3θ̂2 − 1 +

k2

1 + L2k2

]
|δθk|

2

+
1

2

∣∣∣∣∣√1 + L2k2δηk +
ik

√
1 + L2k2

δθk

∣∣∣∣∣
2

, (6.41)

from which we see that the spatially uniform equilibrium solution θ̂ is stable if

|θ̂| > 1/
√

3. (Recall that the corresponding result for the basic cubic nonlin-

earity model was similar in the low-β limit, but that β did shift the stability

boundary slightly.)
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We can conclude from the above analysis that whenever C is such that

θ3 − θ + C has three unequal real roots, the two that are greater than 1/
√

3

in absolute value correspond to stable spatially uniform equilibria. (In fact,

the root in between corresponds to an unstable spatially uniform equilibrium.)

If C is such that θ3 − θ + C has only one real root, then it corresponds to a

stable spatially uniform equilibrium. Thus, depending on the value of C, the

system can be either monostable or bistable. Of course, these remarks only

apply when α > 1
2L

, so that V ∗ is a valid Lyapunov functional.

6.4 Analysis of equilibria for the complex activator-inhibitor

equation

For purposes of analyzing equilibria, we will consider the complex activator-

inhibitor equation in one space dimension,

τθ∂tθ = l2∂xxθ − |θ|
2θ + θ + η,

τη∂tη = L2∂xxη − η − θ + C,
(6.42)

with periodic boundary conditions. For C = 0, there are stable spatially peri-

odic pattern solutions, which in the one-dimensional case can be thought of as

helical, since a three-dimensional (phasor) plot of the real and imaginary parts

of either the activator or the inhibitor plotted along the single space dimension

would trace out a helix. For |C| sufficiently large, there is a stable spatially

uniform equilibrium solution. The intermediate values of |C| can produce pat-

terns in which the direction of the activator (and inhibitor) vectors oscillate

between two different directions as one moves along the space dimension (or, if

|C| is small enough, the helical solution is simply perturbed by higher spatial

harmonics). If instead of thinking about the complex envelope, we instead re-

turn to the point of view of coupled oscillators, the helical solution corresponds

to a traveling wave (or rotating wave), like the threads of a turning screw. In
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this section, we will analyze the stability with respect to linear perturbations

of helical equilibria for C = 0 and spatially uniform equilibria for |C| large. We

will also show how to express the dynamics and Lyapunov functional in polar

coordinates. For the analysis in this section, we will assume throughout that

α = τθ/τη > 1, and also that β = l/L < 1, although not necessarily β << 1.

6.4.1 Polar coordinate transformation

Since it is often natural to examine coupled oscillator equations in polar

coordinates, we define

θR + iθI = rθ exp(iψθ),

ηR + iηI = rη exp(iψη), (6.43)

CR + iCI = rC exp(iψC).

The dynamics in transformed coordinates are (see Appendix A),

τθ∂trθ = l2
[
∂xxrθ − rθ(∂xψθ)

2
]
− r3

θ + rθ + rη cos(ψη − ψθ),

τη∂trη = L2
[
∂xxrη − rη(∂xψη)

2
]
− rη − rθ cos(ψη − ψθ) + rC cos(ψη − ψC),

τθ∂tψθ = l2∂xxψθ +
2l2

rθ
(∂xrθ)(∂xψθ) +

rη
rθ

sin(ψη − ψθ),

τη∂tψη = L2∂xxψη +
2L2

rη
(∂xrη)(∂xψη) +

rθ
rη

sin(ψη − ψθ)−
rC
rη

sin(ψη − ψC).

(6.44)

We can also write the Lyapunov functional in transformed coordinates as

V ∗ =
∫

Ω

[
l2

2
|∂xrθ|

2 +
l2

2
r2
θ |∂xψθ|

2 +
L2

2
|∂xrη|

2 +
L2

2
r2
η|∂xψη|

2 +
1

4
r4
θ −

1

2
r2
θ

+
1

2
r2
η − rCrη cos(ψη − ψC) + rθrη cos(ψη − ψθ)

−(rθ cosψθ − rC cosψC)
[
(−1 + L2∆)−1(rθ cosψθ − rC cosψC)

]
−(rθ sinψθ − rC sinψC)

[
(−1 + L2∆)−1(rθ sinψθ − rC sinψC)

] ]
dx.

(6.45)
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We expect that the Lyapunov functional in transformed coordinates will de-

pend only on relative phases and not on any absolute phases. All of the

terms except those involving (−1 + L2∆)−1 clearly meet this requirement.

For the terms involving (−1 + L2∆)−1, we can use the fact that the opera-

tor (−1 + L2∆)−1 can be represented as (−1 + L2∆)−1v = w ∗ v, i.e., as a

convolution with an even kernel w:∫
Ω

[(rθ cosψθ − rC cosψC)[w ∗ (rθ cosψθ − rC cosψC)]

+(rθ sinψθ − rC sinψC)[w ∗ (rθ sinψθ − rC sinψC)]]dx

=
∫

Ω

∫
Ω

[rθ(x, t)w(x− y)rθ(y, t) [cosψθ(x, t) cosψθ(y, t)

+ sinψθ(x, t) sinψθ(y, t)]

−rθ(x, t)w(x− y)rC [cosψθ(x, t) cosψC + sinψθ(x, t) sinψC ]

−rCw(x− y)rθ(y, t) [cosψC cosψθ(y, t) + sinψC sinψθ(y, t)]

+rCw(x− y)rC [cosψC cosψC + sinψC sinψC ] ]dydx

=
∫

Ω

∫
Ω

[rθ(x, t)w(x− y)rθ(y, t) cos(ψθ(x, t)− ψθ(y, t))

−rθ(x, t)w(x− y)rC cos(ψθ(x, t)− ψC)

−rCw(x− y)rθ(y, t) cos(ψC − ψθ(y, t)) + rCw(x− y)rC]dydx.(6.46)

Thus, the convolution terms also depend only on relative phases, not on any

absolute phase.

Although V̇ ∗ could in principle be calculated using

V̇ ∗ =
δV ∗

δrθ
· (∂trθ) +

δV ∗

δrη
· (∂trη) +

δV ∗

δψθ
· (∂tψθ) +

δV ∗

δψη
· (∂tψη), (6.47)

V̇ ∗ will take a more complicated form in the (rθ, rη, ψθ, ψη) variables than in

the (θR, θI , ηR, ηI) variables due to the (−1 + L2∆)−1 terms.

The ideal helical solution in the C = 0 case in one space dimension can

be simply described in the transformed coordinates as
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∂xψθ = ∂xψη ≡ φ = constant,

ψθ = ψη + π,

rθ ≡ Rθ = constant,

rη ≡ Rη = constant.

(6.48)

(We are assuming that the boundary conditions are periodic, which will select

specific possibilities for φ, of which it is possible that none or more than one will

lead to ideal stable equilibria. If the domain Ω is large, we expect that there

will be at least one ideal stable equilibrium. If the interval Ω has length |Ω|,

then the periodic boundary conditions imply that ψθ(x+ |Ω|) = ψθ(x) + 2πm

and ψη(x+ |Ω|) = ψη(x) + 2πm for some integer m.)

In the C = 0 case, in addition to the ideal helical equilibrium solution

taking a simple form, the Lyapunov functional at equilibria also takes a par-

ticularly simple form:

V ∗e = −
∫

Ω

1

4
r4
θ dx. (6.49)

Despite the simple form that the ideal equilibrium solutions and equilib-

rium energy take in polar coordinates, it turns out to be easier to analyze the

stability of the ideal solutions using a different change of coordinates: one that

retains the complex character of the dynamics, but rotates with the helical

solution along the (single) space dimension.

6.4.2 Analysis of the ideal helical equilibria in the C = 0 case

The goal of our analysis of the ideal helical equilibrium solutions for the

C = 0 case in one space dimension is to show that these equilibria are stable

with respect to linear perturbations. The feature of the ideal helical solutions

that makes this analysis tractable is that these solutions involve pure sinusoids
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with a single spatial frequency (or wave number), φ, which (without loss of

generality) we will assume to be positive.

The complex dynamics

τθ∂tθ = l2∂xxθ − |θ|
2θ + θ + η,

τη∂tη = L2∂xxη − η − θ + C,
(6.50)

are the starting point for this analysis. Let the ideal helical equilibrium solu-

tion of interest have the form

θ = Rθe
iφx,

η = Rηe
iφx.

(6.51)

We define the new coordinates θH and ηH such that θH is always aligned with

the ideal helical equilibrium solution:

θH = θe−iφx,

ηH = ηe−iφx.
(6.52)

We now calculate the dynamics for θH and ηH (for now, carrying along C in

the equations, even though we will later set C = 0):

τθ∂tθH = l2(∂xxθH + i2φ∂xθH − φ
2θH)− |θH |

2θH + θH + ηH ,

τη∂tηH = L2(∂xxηH + i2φ∂xηH − φ
2ηH)− θH − ηH + CH ,

(6.53)

where CH = Ce−iφx, and the corresponding Lyapunov functional can be ex-

pressed in complex form as

V ∗ =
∫

Ω

[
l2

2
|∂xθH + iφθH |

2 +
1

4
|θH |

4 −
1

2
|θH |

2 +
L2

2
|∂xηH + iφηH |

2

+
1

2
|ηH |

2 − Re{CHηH}+ Re{θHηH}

−(θH−CH)[(−1 + L2(∂x + iφ)2)−1(θH−CH)]
]
dx. (6.54)

The ideal helical equilibrium solution of interest (with C = 0) is
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θH = Rθ = constant,

ηH = Rη = constant.
(6.55)

Solving for the constant values Rθ and Rη, we have

0 = −l2φ2Rθ −R
3
θ +Rθ +Rη,

0 = −L2φ2Rη −Rη −Rθ,
(6.56)

which leads to

Rη = −
1

1 + L2φ2
Rθ,

0 = −l2φ2Rθ −R
3
θ +Rθ −

1

1 + L2φ2
Rθ,

R2
θ = 1− l2φ2 −

1

1 + L2φ2
. (6.57)

Note that

max
φ

Rθ = 1− β, (6.58)

and is attained for φ =
√

1− β/
√
lL. Thus, the magnitude of the ideal helical

solution is maximized for a value of φ near the reciprocal of the geometric

mean of l and L, the activator and inhibitor length scales. (Keep in mind that

we know from the form of the original Lyapunov functional on equilibria, V ∗e ,

that a larger Rθ corresponds to a lower energy V ∗e .) Figure 6.1 shows Rθ as a

function of φ over the range of values φ > 0 for which Rθ is well-defined.

Next, we perturb the dynamics using

θH = Rθ + δθH ,

ηH = Rη + δηH .
(6.59)

Noting that

|Rθ + δθH |
2(Rθ + δθH)

= (R2
θ +RθδθH +RθδθH + |δθH |

2)(Rθ + δθH)
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Figure 6.1: Plot of Rθ versus φ

= R3
θ + 2R2

θδθH +R2
θδθH + 2Rθ|δθH |

2 +Rθ(δθH)2 + |δθH |
2δθH

= R3
θ + 3R2

θRe{δθH}+ iR2
θIm{δθH}+ 3Rθ(Re{δθH})

2

+i2RθRe{θH}Im{θH}+Rθ(Im{θH})
2 + |δθH |

2δθH , (6.60)

we find that the perturbed dynamics are

τθ∂tδθH = l2(∂xxδθH + i2φ∂xδθH − φ
2δθH)− |δθH |

2δθH − 3R2
θRe{δθH}

−3Rθ(Re{δθH})
2 −Rθ(Im{δθH})

2 − iR2
θIm{δθH}

−i2RθRe{δθH}Im{δθH}+ δθH + δηH ,

τη∂tδηH = L2(∂xxδηH + i2φ∂xδηH − φ
2δηH)− δθH − δηH . (6.61)

The Lyapunov functional for this perturbed system is

V ∗p =
∫

Ω

[
l2

2
|∂xδθH + iφδθH |

2 +
1

4
|δθH |

4 −
1

2
|δθH |

2 +
L2

2
|∂xδηH + iφδηH |

2

+
1

2
|δηH |

2 + Re{δθHδηH}+
3

2
R2
θ(Re{δθH})

2 +Rθ(Re{δθH})
3

+Rθ(Re{δθH})(Im{δθH})
2 +

1

2
R2
θ(Im{δθH})

2

−δθH [(−1 + L2(∂x + iφ)2)−1(δθH)]
]
dx. (6.62)
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The operator (−1+L2(∂x+iφ)2)−1 is well-behaved just like (−1+L2∂xx)
−1. The

subscript “p” is to emphasize that this Lyapunov functional for the perturbed

dynamics is different from the original Lyapunov functional for the θH and ηH

dynamics, equation (6.54).

When the perturbation is zero (i.e., δθH = 0 and δηH = 0), clearly

V ∗p = 0. If for sufficiently small but nonzero perturbations we can show that

V ∗p > 0, then we could conclude that the ideal helical solution is stable. Since

we are only concerned with small perturbations, we will neglect all of the

higher-order terms in V ∗p and retain only the quadratic terms. Furthermore,

we will divide up the (3/2)R2
θ(Re{δθH})2 term into two terms, one of which can

be merged with the corresponding term involving (Im{δθH})2. The Lyapunov

functional then becomes

V ∗q =
∫

Ω

[
l2

2
|∂xδθH + iφδθH |

2 −
1

2
(1−R2

θ)|δθH |
2 +

L2

2
|∂xδηH + iφδηH |

2

+
1

2
|δηH|

2 + Re{δθHδηH} − (δθH)[(−1 + L2(∂x + iφ)2)−1(δθH)]

+R2
θ(Re{δθH})

2
]
dx, (6.63)

where the subscript “q” is used because this Lyapunov functional is quadratic.

At this point, we consider Fourier series expansions of δθH and δηH ,

and determine V ∗q in terms of the Fourier coefficients. The Fourier series

representations for θ and η are

δθH =
∑
k

δθke
ikx,

δηH =
∑
k

δηke
ikx,

(6.64)

The additional Fourier relationships we need are
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1

|Ω|

∫
Ω
|∂xδθH + iφδθH |

2dx =
1

|Ω|

∫
Ω

∣∣∣∣∑
k

ikδθke
ikx +

∑
k

iφδθke
ikx

∣∣∣∣2dx
=

1

|Ω|

∫
Ω

∣∣∣∣∑
k

i(k + φ)δθke
ikx

∣∣∣∣2dx
=

∑
k

(k + φ)2|δθk|
2,

1

|Ω|

∫
Ω
|∂xδηH + iφδηH |

2dx =
∑
k

(k + φ)2|δηk|
2, (6.65)

and

−1 + L2(∂x + iφ)2 ↔ −1− L2(k + φ)2,

(−1 + L2(∂x + iφ)2)−1 ↔
−1

1 + L2(k + φ)2
,

−
1

|Ω|

∫
Ω

(δθH)[(−1 + L2(∂x + iφ)2)−1(δθH)]dx =
∑
k

1

1 + L2(k + φ)2
|δθk|

2.

(6.66)

Finally, the (Re{θ})2 term is analyzed as follows:

δθH =
∑
k

δθke
ikx = δθ0 +

∑
k>0

[
δθke

ikx + δθ−ke
−ikx

]
= Re{δθ0}+ iIm{δθ0}+

∑
k>0

[(Re{δθk}+ iIm{δθk}) (cos kx+ i sin kx)

+ (Re{δθ−k}+ iIm{δθ−k}) (cos kx− i sin kx)]

= Re{δθ0}+
∑
k>0

(Re{δθk + δθ−k} cos kx− Im{δθk − δθ−k} sin kx)

+i

Im{δθ0}+
∑
k>0

(Re{δθk − δθ−k} sin kx+ Im{δθk + δθ−k} cos kx)

 ,
1

|Ω|

∫
Ω

(Re{δθH})
2dx

= (Re{δθ0})
2 +

1

2

∑
k>0

[
(Re{δθk + δθ−k})

2 + (Im{δθk − δθ−k})
2
]

= (Re{δθ0})
2 +

1

2

∑
k>0

|δθk + δθ−k|
2. (6.67)
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We thus obtain

1

|Ω|
V ∗q =

∑
k

[
l2

2
(k + φ)2|δθk|

2 −
1

2
(1−R2

θ)|δθk|
2 +

L2

2
(k + φ)2|δηk|

2 +
1

2
|δηk|

2

+Re{δθkδηk}+
1

1 + L2(k + φ)2
|δθk|

2
]

+R2
θ(Re{δθ0})

2 +
1

2
R2
θ

∑
k>0

|δθk + δθ−k|
2. (6.68)

Plugging in the value of Rθ into the first term of V ∗q in which it appears then

gives

1

|Ω|
V ∗q =

∑
k

[
l2

2
(k + φ)2|δθk|

2−
1

2

(
l2φ2 +

1

1 + L2φ2

)
|δθk|

2 +
L2

2
(k + φ)2|δηk|

2

+
1

2
|δηk|

2 + Re{δθkδηk}+
1

1 + L2(k + φ)2
|δθk|

2
]

+R2
θ(Re{δθ0})

2 +
1

2
R2
θ

∑
k>0

|δθk + δθ−k|
2

=
∑
k

[(
l2

2
(k + φ)2 −

l2φ2

2
−

1

2

(
1

1 + L2φ2

)
+

1

1 + L2(k + φ)2

)
|δθk|

2

+

(
1 + L2(k + φ)2

2

)
|δηk|

2 + Re{δθkδηk}
]

+R2
θ(Re{δθ0})

2 +
1

2
R2
θ

∑
k>0

|δθk + δθ−k|
2

=
∑
k

[
1

2

(
l2(k + φ)2 − l2φ2 −

1

1 + L2φ2
+

1

1 + L2(k + φ)2

)
|δθk|

2

+
1

2

(
1

1 + L2(k + φ)2

)
|δθk|

2 +
1

2

(
1 + L2(k + φ)2

)
|δηk|

2

+Re{δθkδηk}
]

+R2
θ(Re{δθ0})

2 +
1

2
R2
θ

∑
k>0

|δθk + δθ−k|
2

=
∑
k

[
1

2

(
l2k2 + 2l2φk +

1

1 + L2(k + φ)2
−

1

1 + L2φ2

)
|δθk|

2

+
1

2

∣∣∣∣ δθk√
1 + L2(k + φ)2

+
√

1 + L2(k + φ)2δηk

∣∣∣∣2]

+R2
θ(Re{δθ0})

2 +
1

2
R2
θ

∑
k>0

|δθk + δθ−k|
2. (6.69)
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Note that we always have

∣∣∣∣ δθk√
1 + L2(k + φ)2

+
√

1 + L2(k + φ)2δηk

∣∣∣∣2 ≥ 0,

R2
θ(Re{δθ0})

2 ≥ 0, (6.70)

1

2
R2
θ

∑
k>0

|δθk + δθ−k|
2 ≥ 0.

If we can show that V ∗q > 0 whenever θ and η are not both zero, then the ideal

helical equilibrium solution with wave number φ will be stable with respect to

linear perturbations. What we will in fact show is that for a certain range of

values for φ, V ∗q > 0 whenever the small perturbation (6.64) is nonzero (except

for a purely translational perturbation that is not of interest). We will then

conclude that the helical solution, for a certain range of values of φ, is stable

with respect to linear perturbations.

Lemma 6.14 Consider the dynamics (6.50) with α = τθ/τη > 1 and the ideal

helical equilibrium solution (6.51) with wave number φ. For φ ∈ [φmin, φmax],

where φmin =
√

1− β/
√
lL (with β = l/L) and where φmax is a constant with

φmax−φmin > 0 sufficiently small, the ideal helical equilibrium solution is stable

with respect to linear perturbations; i.e., V ∗q > 0 for all small perturbations

(6.64) of the ideal helical equilibrium solution (except for purely translational

perturbations).

Proof: First, consider the k = 0 term of V ∗q . If a perturbation satisfies

δη0 = −
1

1 + L2φ2
δθ0, (6.71)

with δθ0 and δη0 both purely imaginary, then V ∗q = 0. This purely imaginary

constant perturbation corresponds to a simple translation of the original ideal

helical solution to the left or right, and so of course will not cause the energy

163



(either V ∗, V ∗p , or V ∗q ) to change (keep in mind that we are assuming periodic

boundary conditions). This translational perturbation is not one we are inter-

ested in from the point of view of our stability analysis, so we will not consider

it further.

Next, we will determine for what values of φ we have

l2k2 + 2l2φk +
1

1 + L2(k + φ)2
−

1

1 + L2φ2
> 0, ∀k > 0, (6.72)

i.e, we are only considering positive values of k for now. (The k < 0 case

is much more complicated, and we will return to it later.) We see that one

dangerous limit is the k → 0 limit. In this limit, we can neglect terms higher

than linear in k and expand the third term above to yield

2l2φk +
1

1 + L2φ2

 1

1 + L2(k2+2kφ)
1+L2φ2

− 1

1 + L2φ2

≈ 2l2φk +
1

1 + L2φ2

[
1−

L2(k2 + 2kφ)

1 + L2φ2

]
−

1

1 + L2φ2

= 2l2φk −
L2(k2 + 2kφ)

(1 + L2φ2)2

≈

[
2l2φ−

2L2φ

(1 + L2φ2)2

]
k

> 0. (6.73)

The limiting value of φ satisfying the above bound with equality is the value

of φ that maximizes Rθ,

φ >

√
1− β
√
lL

. (6.74)

Furthermore, for φ >
√

1− β/
√
lL,

f(k) = l2k2 + 2l2φk +
1

1 + L2(k + φ)2
−

1

1 + L2φ2
. (6.75)

is monotone increasing, since

df

dk
= 2l2k + 2l2φ−

2L2(k + φ)

(1 + L2(k + φ)2)2
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=

(
2l2 −

2L2

(1 + L2(k + φ)2)2

)
(k + φ)

> 0, ∀k > 0. (6.76)

Now we consider the k < 0 terms of V ∗q . For k < 0, the term

1

2

(
l2k2 + 2l2φk +

1

1 + L2(k + φ)2
−

1

1 + L2φ2

)
|δθk|

2 (6.77)

of V ∗q will be negative for certain values of k, in particular, for k → 0 with

k < 0. Therefore, we need to regroup the terms in V ∗q to show that V ∗q > 0 for

all nonzero perturbations of interest, for some range of values of φ ≥ φmin =
√

1− β/
√
lL.

Letting

g(k) =
l2k2 + 2l2φk + 1

1+L2(k+φ)2 −
1

1+L2φ2

R2
θ

, (6.78)

we have

∑
k

g(k)|δθk|
2 +

∑
k>0

|δθk + δθ−k|
2

=
∑
k>0

g(k)|δθk|
2 + g(−k)|δθ−k|

2 + |δθk|
2 + |δθ−k|

2 + 2Re{δθkδθ−k}

=
∑
k>0

(1 + g(k))|δθk|
2 + (1 + g(−k))|δθ−k|

2 + 2Re{δθkδθ−k}

=
∑
k>0

(
1 + g(k)−

1

1 + g(−k)

)
|δθk|

2 +
∣∣∣∣ 1√

1 + g(−k)
δθk +

√
1 + g(−k)δθ−k

∣∣∣∣2.
(6.79)

In the low k limit (where now, of course, k is positive since we have rewritten

the sum over all k as a sum over positive k only), we know that g(k) → 0.

Therefore,

1 + g(k)−
1

1 + g(−k)
→ 1 + g(k)− (1− g(−k) + (g(−k))2)

= g(k) + g(−k)− (g(−k))2, (6.80)
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and we only need to retain the lowest-order-in-k terms that appear, which are

in fact the k2 terms, since the first-order terms in k subtract out. We obtain

1 + g(k)−
1

1 + g(−k)

→
1

R2
θ

[
l2k2 + 2l2φk +

1

1 + L2(k + φ)2
−

1

1 + L2φ2

+l2k2 − 2l2φk +
1

1 + L2(−k + φ)2
−

1

1 + L2φ2

−
1

R2
θ

(
2l2φ−

2L2φ

(1 + L2φ2)2

)2

k2

]

=
1

R2
θ

[
2l2k2 −

2L2k2

(1 + L2φ2)2
+

8L4φ2k2

(1 + L2φ2)3
−

1

R2
θ

(
2l2φ−

2L2φ

(1 + L2φ2)2

)2

k2

]

=
1

R2
θ

[(
1−

φ2

R2
θ

(
2l2 −

2L2

(1 + L2φ2)2

))(
2l2 −

2L2

(1 + L2φ2)2

)
k2

+
8L4φ2k2

(1 + L2φ2)3

]
(6.81)

For φ ≥ φmin =
√

1− β/
√
lL,

2l2 −
2L2

(1 + L2φ2)2
≥ 0, (6.82)

and since we are also assuming φ is near φmin so that R2
θ > 0, it is clear that

1 + g(k)−
1

1 + g(−k)
> 0 (6.83)

in the low-k limit.

We still need to show that the stability condition, now reduced to

1 + g(k)−
1

1 + g(−k)
> 0, (6.84)

is satisfied ∀k > 0, not just as k → 0, for a range of values φ ≥ φmin. For

convenience, define h(k) = g(−k), and explicitly denote the parametric depen-

dence of g and h on φ by using the subscript notation gφ(k) and hφ(k). For

φ = φmin, we have

dhφmin
dk

= −
1

R2
θ

(
2l2 −

2L2

1 + L2(−k + φmin)2

)
(−k + φmin), (6.85)
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so that the critical points of hφmin(k) occur at k = 0, φmin, and 2φmin. The

values of hφmin(k) at these critical points are easily found to be

hφmin(0) = 0,

hφmin(φmin) = 1,

hφmin(2φmin) = 0,

(6.86)

and hφmin(k) → ∞ as k → ∞. Therefore, ∀k, hφmin(k) ≥ 0, and so we can

conclude that

1 + gφmin(k)−
1

1 + hφmin(k)
≥ 0, (6.87)

with equality only for k = 0. Defining F (k, φ) = 1 + gφ(k) − 1
1+hφ(k)

, we note

that F (k, φ) is a smooth function. Also, for φ > φmin but φ− φmin < ε for ε

sufficently small, we can find a B > 0 and a k̄ such that

F (k, φ) > B, ∀k ≥ k̄, (6.88)

independent of φ. Therefore, since at k = 0,

∂F

∂k
(0, φ) = 0,

∂2F

∂k2
(0, φ) > 0,

(6.89)

for φ − φmin > 0 sufficiently small, we can conclude that F (k, φ) > 0, ∀k >

0, ∀φ ∈ [φmin, φmax], for some φmax > φmin =
√

1− β/
√
lL. So finally we

conclude that indeed there is a range of values [φmin, φmax] for which the ideal

helical equilibrium solutions are guaranteed to be stable with respect to linear

perturbations. 2

Note that even though we have determined that an interval [φmin, φmax]

exists for which the ideal helical equilibrium solution with wave number φ is

stable with respect to linear perturbations, this is not necessarily the largest

such interval. One could, however, numerically calculate [φmin, φmax] in the
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above proposition, and plot the interval as a function of β = l/L (while keeing
√
lL fixed). This procedure would yield a (subset of the) “wedge of stability”

for the ideal helical solution as a function of the parameter β.

6.4.3 Analysis of the spatially uniform equilibrium in the large-|C|

case

For the large-|C| case, we expect to have a stable spatially uniform equi-

librium solution. Returning to the (unperturbed) dynamics for (θR, θI , ηR, ηI),

equation (6.10), we set CI = 0 and CR = constant > 0. The spatially uniform

equilibrium is then given by

θR = Rθ = constant, θI = 0,

ηR = Rη = constant, ηI = 0.
(6.90)

The value of Rθ is found from the equilibrium equations,

Rη = −Rθ + CR,

R3
θ = Rθ +Rη = CR, (6.91)

Rθ = C
1/3
R .

Perturbing about the spatially uniform equilbrium using

θR = Rθ + δθR, θI = δθI ,

ηR = Rη + δηR, ηI = δηI ,
(6.92)

we obtain
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τθ∂tδθR = l2∂xxδθR − [(δθR)2 + (δθI)
2]δθR − 3R2

θδθR − 3Rθ(δθR)2

−Rθ(δθI)
2 + δθR + δηR,

τθ∂tδθI = l2∂xxδθI − [(δθR)2 + (δθI)
2]δθI −R

2
θδθI − 2RθδθRδθI

+δθI + δηI ,

τη∂tδηR = L2∂xxδηR − δηR − δθR,

τη∂tδηI = L2∂xxδηI − δηI − δθI .

(6.93)

Letting

δθ = δθR + iδθI ,

δη = δηR + iδηI ,
(6.94)

we can rewrite the dynamics in complex form as

τθ∂tδθ = l2∂xxδθ − |δθ|
2δθ − 3R2

θRe{δθ} − 3Rθ(Re{δθ})2 −Rθ(Im{δθ})
2

−iR2
θIm{δθ} − i2RθRe{δθ}Im{δθ}+ δθ + δη, (6.95)

τη∂tδη = L2∂xxδη − δη − δθ.

The Lyapunov functional for this perturbed system is

V ∗p =
∫

Ω

[
l2

2
|∂xδθ|

2 +
1

4
|δθ|4 −

1

2
|δθ|2 +

L2

2
|∂xδη|

2 +
1

2
|δη|2 + Re{δθδη}

+
3

2
R2
θ(Re{δθ})2 +Rθ(Re{δθ})3 +Rθ(Re{δθ})(Im{δθ})2

+
1

2
R2
θ(Im{δθ})

2 − δθ[(−1 + L2∂xx)
−1(δθ)]

]
dx. (6.96)

Retaining the quadratic terms of V ∗p , we obtain

V ∗q =
∫

Ω

[
l2

2
|∂xδθ|

2 −
1

2
(1−R2

θ)|δθ|
2 +

L2

2
|∂xδη|

2 +
1

2
|δη|2 + Re{δθδη}

−δθ[(−1 + L2∂xx)
−1(δθ)] +R2

θ(Re{δθ})2
]
dx. (6.97)

Unlike for the C = 0 case, here the analysis is simpler if we use separate Fourier
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series for θR, θI , ηR, and ηI :

1

|Ω|
V ∗q =

∑
k

[(
l2k2

2
+

3

2
R2
θ −

1

2
+

1

1 + L2k2

)
|δθRk|

2 +

(
1

2
+
L2k2

2

)
|δηRk|

2

+δθRkδηRk +

(
l2k2

2
+

1

2
R2
θ −

1

2
+

1

1 + L2k2

)
|δθIk|

2

+

(
1

2
+
L2k2

2

)
|δηIk|

2 + δθIkδηIk

]
=

1

2

∑
k

[ (
l2k2 + 3R2

θ − 1 +
1

1 + L2k2

)
|δθRk|

2

+
∣∣∣∣ 1
√

1 + L2k2
δθRk +

√
1 + L2k2δηRk

∣∣∣∣2
+
(
l2k2 +R2

θ − 1 +
1

1 + L2k2

)
|δθIk|

2

+
∣∣∣∣ 1
√

1 + L2k2
δθIk +

√
1 + L2k2δηIk

∣∣∣∣2]. (6.98)

The condition for V ∗q to be positive is

l2k2 +R2
θ − 1 +

1

1 + L2k2
> 0, (6.99)

which holds if and only if Rθ > 1− β, or equivalently,

|CR| > (1− β)3. (6.100)

6.4.4 Bifurcation from the spatially uniform equilibrium solution

For |CR| > (1− β)3, the spatially uniform equilibrium solution is stable,

and furthermore, as that threshold is crossed, the unstable perturbations in-

volve δθI and δηI . In fact, if we set |CR| = (1 − β)3 and δθR = δηR = 0, we

are left with

τθ∂tδθI = l2∂xxδθI − (δθI)
3 + (2β − β2)δθI + δηI ,

τη∂tδηI = L2∂xxδηI − δηI − δθI .
(6.101)

This real activator-inhibitor system is at the instability threshold for the spa-

tially uniform equilibrium solution, and so for larger values of (2β − β2), a
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Figure 6.2: Complex activator-inhibitor equation near the bifurcation thresh-
old

spatially periodic pattern solution is stable. For this reason, near threshold

we expect there to be a stable pattern for which θI is spatially periodic and

has mean value zero, while θR is spatially periodic with half the period of θI ,

and has its peak value near Rθ. Furthermore, a linear analysis (similar to

the one for the basic cubic nonlinearity model earlier in this chapter) gives
√

1− β/
√
lL as the instability wave number for equation (6.101) - precisely

the wave number that minimized the Lyapunov functional for the ideal helical

solution in the C = 0 case. Figure 6.2 shows θR and θI for the equilibrium

solution with 0 < |CR| < (1− β)3, but |CR| close to (1− β)3.

6.5 Analysis of equilibria using modal equations

The fact that for C = 0 in the complex activator-inhibitor equation there

is a stable helical solution is particularly suggestive that finite modal approxi-

mations of ideal spatially periodic pattern equilibria when C 6= 0 may be useful.

Throughout the modal analysis we will make the following assumptions:
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1. one spatial dimension,

2. periodic boundary conditions, and

3. Ω ⊂ R is an interval with length equal to an integer number of periods

of the ideal solution we are considering.

The first step is to rescale x by the wave number of the ideal solution. We

assume the wave number is
√

1− β/
√
lL, since this is the wave number both

for the linear instability in the (θI , ηI) dynamics as |C| is decreased through

(1−β)3, and for the minimum-energy helical equilibrium solution when C = 0.

Next, we obtain the dynamical equations for the modal coefficients. Then we

find a Lyapunov function for any finite number of modes. The existence of

the Lyapunov function ensures that our modal equations are well-posed and

gives a numerical procedure for determining the modal coefficients. Next, we

determine bounds on the higher-order modes so that we can justify retaining

only the lower-order modes to obtain a good approximation of the equilibrium

of interest. Finally, we generalize the results to the real cubic nonlinearity

model.

6.5.1 Derivation of the modal dynamics

We assume that the ideal equilibrium solution of interest has wave num-

ber
√

1− β/
√
lL, and rescale the complex activator-inhibitor equation dynam-

ics, obtaining

τθ∂tθ = β(1− β)∂xxθ − |θ|
2θ + θ + η,

τη∂tη =
1− β

β
∂xxη − η − θ + C.

(6.102)

Next, we write the Fourier series expansions for θ and η,
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θ =
∑
k

θke
ikx,

η =
∑
k

ηke
ikx,

(6.103)

where k takes integer values since by assumption 2π is the spatial period of

the equilibrium solution for the rescaled dynamics. Plugging the Fourier series

expansion into the dynamical equations gives

∑
k

τθθ̇ke
ikx = −

∣∣∣∣∑
k

θke
ikx

∣∣∣∣2
(∑

k

θke
ikx

)
+
∑
k

[
1− β(1− β)k2

]
θke

ikx

+
∑
k

ηke
ikx,

∑
k

τη η̇ke
ikx = −

∑
k

(
1 +

1− β

β
k2

)
ηke

ikx −
∑
k

θke
ikx + C.

(6.104)

In order to equate modes, we need to expand the cubic term. To see how

to expand the cubic term, note that

(x1 + x2 + x3 + · · ·)(x1 + x2 + x3 + · · ·)

= x1x1 + x2x2 + x3x3 + x1x2 + x2x1 + x1x3 + x3x1 + x2x3 + x3x2 + · · · ,

[(x1 + x2 + x3 + · · ·)(x1 + x2 + x3 + · · ·)] (x1 + x2 + x3 + · · ·)

= |x1|
2x1 + |x2|

2x2 + |x3|
2x3

+2|x1|
2x2 + 2|x1|

2x3 + 2|x2|
2x1 + 2|x2|

2x3 + 2|x3|
2x1 + 2|x3|

2x2

+x1x
2
2 + x1x

2
3 + x2x

2
1 + x2x

2
3 + x3x

2
1 + x3x

2
2

+2x1x2x3 + 2x1x2x3 + 2x1x2x3 + · · · . (6.105)

We thus obtain
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∣∣∣∣∑
k

θke
ikx

∣∣∣∣2
(∑

k

θke
ikx

)
=

∑
k

|θk|
2θke

ikx + 2
∑
j

∑
k 6=j

|θj|
2θke

ikx +
∑
j

∑
k 6=j

θjθ
2
ke
i(2k−j)x

+
∑
j

∑
k 6=j

∑
l 6=j,k

θjθkθle
i(k+l−j)x. (6.106)

The eimx term of the above expression is

|θm|
2θm + 2

∑
j 6=m

|θj|
2θm +

∑
k 6=m

θ2k−mθ
2
k +

∑
j

∑
k 6=j,m,(m+j)/2

θjθkθm+j−k. (6.107)

The modal dynamics are then

τθ θ̇m =
(
1−m2β(1− β)

)
θm −

[
|θm|

2θm + 2
∑
j 6=m

|θj|
2θm +

∑
k 6=m

θ2k−mθ
2
k

+
∑
j

∑
k 6=j,m,(m+j)/2

θjθkθm+j−k

]
+ ηm,

τηη̇m = −

(
1 +m2 1− β

β

)
ηm − θm + Cδm0,

(6.108)

where

δjk =

{
1 j = k
0 j 6= k.

(6.109)

6.5.2 Lyapunov function for the modal dynamics

Let

V = −
1

2

∑
m

(
1−m2β(1− β)

)
|θm|

2 +
1

4

∑
m

|θm|
4 +

1

2

∑
m

∑
j 6=m

|θj|
2|θm|

2

+Re

1

2

∑
m

∑
k 6=m

θ2k−mθ
2
kθm

+ Re

1

4

∑
m

∑
j 6=m

∑
k 6=j,m,(m+j)/2

θjθkθm+j−kθm


+

1

2

∑
m

(
1 +m2 1− β

β

)
|ηm|

2 − Re{Cη0}+
∑
m

Re{θmηm}

+
∑
m

(
1 +m2 1− β

β

)−1

|θm − Cδm0|
2. (6.110)
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Lemma 6.15 The function V given by equation (6.110), appropriately trun-

cated, is a Lyapunov function for the dynamics given by equation (6.108) for

any finite number of modes.

Proof: Differentiating the terms of V with respect to θm, we obtain

∂

∂θm

(
1

2

∑
l

(
1− l2β(1− β)

)
|θl|

2

)
=
(
1−m2β(1− β)

)
θm,

∂

∂θm

(
1

4

∑
l

|θl|
4

)
= |θm|

2θm,

∂

∂θm

1

2

∑
l

∑
j 6=l

|θj|
2|θl|

2

 = 2
∑
j 6=m

|θj|
2θm,

∂

∂θm

Re

1

2

∑
l

∑
k 6=l

θ2k−lθ
2
kθl


 =

∑
k 6=m

θ2k−mθ
2
k +

∑
l 6=m

θ2m−lθmθl

=
∑
k 6=m

θ2k−mθ
2
k +

∑
k 6=m

θmθkθ2m−k,

∂

∂θm

Re

1

4

∑
l

∑
j 6=l

∑
k 6=j,l,(j+l)/2

θjθkθl+j−kθl


 =

∑
j 6=m

∑
k 6=j,m,(j+m)/2

θjθkθm+j−k,

∂

∂ηm

(
1

2

∑
l

(
1 + l2

1− β

β

)
|ηl|

2

)
=

(
1 +m2 1− β

β

)
ηm,

∂

∂η0

(Re{Cη0}) = C,

∂

∂θm

(∑
l

Re{θlηl}

)
= ηm,

∂

∂ηm

(∑
l

Re{θlηl}

)
= θm,

∂

∂θm

∑
l

(
1 + l2

1− β

β

)−1

|θl − Cδl0|
2

 = 2

(
1+m2 1− β

β

)−1

(θm−Cδm0).

(6.111)

Noting that

∑
k 6=m

θmθkθ2m−k +
∑
j 6=m

∑
k 6=j,m,(j+m)/2

θjθkθm+j−k =
∑
j

∑
k 6=j,m,(j+m)/2

θjθkθm+j−k,

(6.112)
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we see that

τη η̇m = −
∂V

∂ηm
,

τθθ̇m = −
∂V

∂θm
+ 2ηm + 2

(
1 +m2 1− β

β

)−1

(θm − Cδm0).

(6.113)

But

ηm +

(
1 +m2 1− β

β

)−1

(θm − Cδm0) = −

(
1 +m2 1− β

β

)−1

(τηη̇m), (6.114)

so

V̇ =
∑
m

[
∂V

∂ηm
· η̇m +

∂V

∂θm
· θ̇m

]

= −
∑
m

τθ|θ̇m|2 + τη|η̇m|
2 + 2τη

(
1 +m2 1− β

β

)−1 (
Re{θ̇mη̇m}

)
= −

∑
m

[ ∣∣∣∣∣∣√τθθ̇m +
1
√
α

(
1 +m2 1− β

β

)−1

(
√
τηη̇m)

∣∣∣∣∣∣
2

+ |
√
τη η̇m|

2

−
1

α

∣∣∣∣∣∣
(

1 +m2 1− β

β

)−1

(
√
τηη̇m)

∣∣∣∣∣∣
2 ]

(6.115)

Thus, if α = τθ/τη > 1, then V̇ ≤ 0, with V̇ = 0 only for equilibria (for any

finite number of modes). V is also radially unbounded, and therefore is a valid

Lyapunov function for any finite number of modes. 2

6.5.3 Bounding the higher-order modes

At equilibrium for the modal dynamics, we have

ηk = −

(
1 + k2 1− β

β

)−1

(θk − Cδk0),

∑
k

1− k2β(1− β)−
1

1 + k2 1−β
β

 θkeikx =
∣∣∣∣∑
k

θke
ikx

∣∣∣∣2
(∑

k

θke
ikx

)
− C.

(6.116)
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Multiplying both sides by e−imx, m 6= 0, and integrating over Ω gives1−m2β(1− β)−
1

1 +m2 1−β
β

 θm|Ω| =
∫

Ω
|θ|2

(∑
k

θke
ikx

)
e−imxdx,

∣∣∣∣1−m2β(1− β)−
1

1 +m2 1−β
β

∣∣∣∣|θm||Ω| ≤ ∫
Ω
|θ|2

∣∣∣∣(∑
k

θke
ikx

∣∣∣∣dx
=

∫
Ω
|θ|3dx

≤
1

2

∫
Ω
|θ|4dx+

1

2

∫
Ω
|θ|2dx

=
1

2

(
||θ||4L4(Ω) + ||θ||2L2(Ω)

)
,

|θm| ≤
1

2|Ω|

1∣∣∣∣m2β(1− β)−
m2 1−β

β

1+m2 1−β
β

∣∣∣∣
(
||θ||4L4(Ω) + ||θ||2L2(Ω)

)

≤
1

2|Ω|

1

m2β(1− β)− 1

(
||θ||4L4(Ω) + ||θ||2L2(Ω)

)
for m2 >

1

β(1− β)

≤
1

m2

[
1

|Ω|β(1− β)

(
||θ||4L4(Ω) + ||θ||2L2(Ω)

)]
for m2 >

2

β(1− β)
.

(6.117)

We can derive bounds on ||θ||4L4(Ω) and ||θ||2L2(Ω) from the equilibrium equations

0 = β(1− β)∂xxθR − (θ2
R + θ2

I)θR + θR + ηR,

0 = β(1− β)∂xxθI − (θ2
R + θ2

I )θI + θI + ηI ,

0 =
1− β

β
∂xxηR − ηR − θR + CR,

0 =
1− β

β
∂xxηI − ηI − θI + CI .

(6.118)

We first obtain

β(1− β)
(
||∂xθR||

2
L2(Ω) + ||∂xθI ||

2
L2(Ω)

)
+
∫

Ω
(θ2
R + θ2

I )
2dx

−||θR||
2
L2(Ω) − ||θI ||

2
L2(Ω) +

1− β

β

(
||∂xηR||

2
L2(Ω) + ||∂xηI ||

2
L2(Ω)

)
+||ηR||

2
L2(Ω) + ||ηI ||

2
L2(Ω) −

∫
Ω

(CRηR + CIηI)dx = 0. (6.119)
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Next, using

∣∣∣∣ ∫
Ω

(CRηR + CIηI)dx
∣∣∣∣ ≤ ∫

Ω
|CRηR|dx+

∫
Ω
|CIηI |dx

≤
1

2

(
||ηR||

2
L2(Ω) + ||ηI ||

2
L2(Ω)

)
+

1

2
|Ω|(C2

R + C2
I )

=
1

2

(
||ηR||

2
L2(Ω) + ||ηI ||

2
L2(Ω)

)
+

1

2
|Ω|C2, (6.120)

we can conclude

∫
Ω

(θ2
R + θ2

I )
2dx− ||θR||

2
L2(Ω) − ||θI ||

2
L2(Ω) ≤

1

2
|Ω||C|2. (6.121)

Since ∫
Ω

(θ2
R + θ2

I )dx ≤
1

2

∫
Ω

(θ2
R + θ2

I)
2dx+

1

2
|Ω|, (6.122)

we have

∫
Ω

(θ2
R + θ2

I)
2dx ≥ 2

∫
Ω

(θ2
R + θ2

I)dx− |Ω| = 2
(
||θR||

2
L2(Ω) + ||θI||

2
L2(Ω)

)
− |Ω|,

(6.123)

so that

||θ||2L2(Ω) = ||θR||
2
L2(Ω) + ||θI ||

2
L2(Ω) ≤

(
1 +

1

2
|C|2

)
|Ω|. (6.124)

Also,

∫
Ω

(θ2
R + θ2

I )
2dx− ||θR||

2
L2(Ω) − ||θI ||

2
L2(Ω) =

∫
Ω

[(θ2
R + θ2

I )
2 − (θ2

R + θ2
I )]dx

≥
∫

Ω

[
1

2
(θ2
R + θ2

I )
2 −

1

2

]
dx, (6.125)

so

1

2

∫
Ω

(θ2
R + θ2

I)
2dx−

1

2
|Ω| ≤

1

2
|Ω||C|2,

||θ||4L4(Ω) ≤ (1 + |C|2)|Ω|. (6.126)

Therefore,

|θm| ≤
1

m2

[
2(1 + |C|2)

β(1− β)

]
for m2 ≥

2

β(1− β)
. (6.127)
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We can now bound the error in approximating the exact equilibrium

solution θ with its finite modal approximation
∑N
k=−N θke

ikx, forN2 ≥ 2/(β(1−

β)):

∣∣∣∣θ − N∑
k=−N

θke
ikx

∣∣∣∣ ≤ ∞∑
k=N+1

|θk|+
−∞∑

k=−(N+1)

|θk|

=

[
2(1 + |C|2)

β(1− β)

] ∞∑
k=N+1

1

k2
+

−∞∑
k=−(N+1)

1

k2


≤

1

N

[
4(1 + |C|2)

β(1− β)

]
. (6.128)

Thus, the error in approximating an exact periodic equilibrium solution θ of

equation (6.108) using a finite number of modes approaches zero as the number

of modes used becomes large. Furthermore, the smaller β is (for β < 1/2), the

more terms are needed to achieve a given error tolerance, in accord with what

one would expect, considering β represents the ratio of the two length scales

present in the dynamics.

6.5.4 Modal results for the real cubic nonlinearity model

The real cubic nonlinearity model can be treated within the framework

of the complex activator-inhibitor equation by choosing purely real initial con-

ditions for the modal dynamics. From the form of the dynamics (6.108), it

follows that if we take

θk = θ−k,

ηk = η−k

(6.129)

at t = 0, then equation (6.129) will also hold ∀t > 0.

For the complex activator-inhibitor equation, we considered β < 1 with-

out requiring β << 1. For the real cubic nonlinearity model, however, we

generally have considered β << 1. What the results of the modal analysis
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tell us in the β << 1 case is that we many need to retain many modal co-

efficients to obtain a good approximation to the spike equilibrium, which is

what we would expect, but that a finite number of modes is still sufficient to

approximate the spike equilibrium solution.

6.6 Numerical results for the spatially discretized cubic

nonlinearity model

We conclude this chapter with a look at some numerical results for equi-

libria of the spatially discretized cubic nonlinearity model in one space dimen-

sion. For β << 1, α > 1, and C chosen so that the spatially uniform equilib-

rium solution is stable (C = −2
√

2
3
√

3
was used), the stable equilibria consist of a

narrow spike equilibrium, a wide pulse equilibrium, and the spatially uniform

equilibrium. As β is increased (by decreasing L while holding l fixed), the

wide pulse solution narrows, and eventually coalesces with the narrow spike

solution. If β becomes sufficiently large, the narrow spike solution becomes

unstable, and only the spatially uniform equilibrium solution remains stable.

If the Lyapunov function V ∗ is used as an energy measure for the equilibria,

then when β is very small, the energy of the narrow spike solution is lowest,

the energy of the wide pulse solution is higher, and the energy of the spatially

uniform equilibrium is higher still. As β is increased, the energy of both the

narrow spike solution and wide pulse solution increase (while the energy of

the spatially uniform equilibrium remains unchanged). As the wide pulse and

narrow spike solutions coalesce, their energy surpasses that of the spatially

uniform equilibrium. This behavior is illustrated in figure 6.3. Figures 6.4 and

6.5 show waterfall diagrams of the wide pulse and narrow spike shapes for the

values of β used to construct figure 6.3.
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Figure 6.3: V ∗ energy for the cubic nonlinearity model equilibria as a function
of β
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Figure 6.4: Wide pulse equilibrium shape as a function of β
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Figure 6.5: Narrow spike equilibrium shape as a function of β
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Chapter 7

Smart Systems Applications

7.1 Introduction

There are a variety of ways in which the cubic nonlinearity model and

its variants could potentially be used in smart-systems applications. We will

consider potential MEMS actuator-array applications (sorting and microposi-

tioning), a coupled-oscillator phased-array antenna application, and a real-time

image-processing application. Other potential application areas not expanded

on here are control of smart materials for ultrasonic motors and control of

boundary-layer fluid flow. The purpose here is merely to illustrate some of the

basic control issues, since a lot of engineering would be required to actually

implement any of these systems. However, for each application, the technology

either already exists or will exist in the forseeable future, so it is appropriate

to consider how control systems might be implemented for them.

Before examining specific applications, we describe how spike solutions

can be excited in one- and two-dimensional networks based on the cubic non-

linearity model. We assume that β << 1 and α > 1 so that we have a

Lyapunov functional and also the possibility of spike equilibria. One tech-

nique for exciting a spike is to choose appropriate initial conditions, but an

alternative technique is to locally raise the control parameter above the bifur-

cation threshold. When the control parameter is in the pattern-forming regime

over a localized region, the pattern solution forms in that region, but smoothly

connects to the spatially uniform equilibrium outside that region. When the

control parameter is then returned to the below-threshold value, the pattern
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 0
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 θ
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 η

 β=0.1

 −−>|  L  |<−−

Figure 7.1: One cycle of the pattern solution excited by locally raising the con-
trol parameter for the one-dimensional discretization of the cubic nonlinearity
model

solution relaxes to the corresponding spike solution. This method of exciting

spikes is illustrated for one dimension in figures 7.1 and 7.2, and for two di-

mensions in figures 7.3 and 7.4. (The spatial discretization is such that there

are ten sites within the length L.)

If the control parameter is raised over a larger region than required to

excite a single spike, then in the two-dimensional system there are several pos-

sibilities, depending on the shape of the region in which the control parameter

was raised, and also depending on the spatially uniform value of control pa-

rameter the system is returned to [8]. One possibility is a radially symmetric

solution corresponding roughly to a one-dimensional off-center spike rotated

through 360 degrees, as illustrated in figures 7.5 and 7.6. To excite the radially

symmetric solution shown in figure 7.6, the control parameter (for figure 7.5)

was raised in a circular region larger than that used in figure 7.3, in order to

excite more of the pattern solution. A second possibility is that the pattern
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Figure 7.2: The resulting spike when the control parameter is restored to its
original value after a cycle of the pattern solution has been excited as in figure
7.1

 β = 0.1

 x

 θ

 y

Figure 7.3: One cycle of the pattern solution excited by locally raising the con-
trol parameter for the two-dimensional discretization of the cubic nonlinearity
model
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 β = 0.1
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Figure 7.4: The resulting spike when the control parameter is restored to its
original value after a cycle of the pattern solution has been excited as in figure
7.3

excited by raising the control parameter will separate into a number of spikes

when the control parameter is returned to its spatially uniform value. This

phenomenon is illustrated in figures 7.7 and 7.8, and in this case, the region

in which the control parameter is raised is not circularly symmetric. For all of

figures 7.1 through 7.8, the control parameter has the same value: C = −2
√

2
3
√

3
.

Once spike solutions have been excited in various locations throughout

a network, they can all be removed at once simply by taking the control pa-

rameter to a value where only a spatially uniform equilibrium is stable. Fur-

thermore, since the control parameter only needs to be raised temporarily in

a localized region to excite a spike, a sensor-driven mechanism for exciting a

spike can be ac-coupled. A network can thereby act as an analog memory,

forming spikes asynchronously and in parallel in response to local sensor driv-

ing. But then all the spikes can be eliminated at once by driving a single

control input connected to all the sites in the network.

When spikes or circular walls are distributed throughout a network, any
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 β = 0.1
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Figure 7.5: The pattern solution excited by locally raising the control param-
eter over a circular region larger than that of figure 7.3

 β = 0.1

 x

 θ

 y

Figure 7.6: The resulting circularly symmetric solution when the control pa-
rameter is restored to its original value after the pattern solution of figure 7.5
has been excited
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Figure 7.7: The pattern solution excited by locally raising the control param-
eter over a non-circular region larger than that of figure 7.3

 β = 0.1

 θ

 x

 y

Figure 7.8: The resulting spikes when the control parameter is restored to its
original value after the pattern solution of figure 7.7 has been excited
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interaction between them decreases exponentially with distance [21]. There-

fore, unless the activator-inhibitor system is highly homogeneous, one would

not expect to observe interactions between spikes or walls that are not in close

proximity. However, numerical study indicates that under some conditions in

highly homogeneous systems, spikes can attract or repel each other, creating

complicated “molecules,” and similar results have been observed in gas dis-

charge experiments [21]. Even in systems that are homogeneous enough for

spikes to influence each other, presumably for spikes separated by a sufficiently

large distance, the resulting motion of the spikes would be on a much longer

time scale than τθ and τη (when τθ > τη, but τθ ≈ τη).

So to summarize, interesting spatially nonuniform equilibria can be read-

ily excited in spatial discretizations of the cubic nonlinearity model. In two

dimensions, circularly symmetric solutions are possible in addition to spike

solutions, depending on the value of the control parameter, and depending on

how the spike is excited.

7.2 MEMS actuator-array applications

The MEMS actuator-array applications we will consider here involve

moving microscopic items (for example, sorting small parts or bringing to-

gether small quantities of chemical reactants), or micropositioning small items

[18]. It is also possible to use MEMS micromirror arrays for electro-optic appli-

cations, and it is potentially possible to use MEMS actuator arrays to control

boundary-layer fluid flow [16, 17]. Although the specifics of pattern control

differ for each of these applications, certain issues are inherent to the micro-

actuators themselves, independent of the particular application: for example,

the control voltages required, the forces and torques involved, and the way in

which pattern-forming-system dynamics are translated into actuator motion.
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We will assume for MEMS actuator arrays that there is a pattern-forming

system implemented in a parallel, distributed fashion, collocated with the actu-

ators, and that the control signal to each actuator is determined by a pattern-

forming-system variable at its site. The pattern-forming system could be im-

plemented in an analog or digital fashion, and the actuators could be driven in

a linear regime of displacement proportional to control or a nonlinear regime of

snapping between the two extremes of their range of motion, but in any case,

the motion of the actuators is assumed not to influence the pattern-forming

system directly. That way, we can consider control of the pattern indepen-

dently of mechanical loads on the actuator array. When it is desirable to use

information about the mechanical loads to help control the pattern, we will

assume that separate pressure sensors provide the information, which can then

be applied as input to the pattern-forming system.

Another way to state our approach to controlling MEMS actuator arrays

is that we are assuming the actuators are “stiff” in the face of applied loads,

and then deciding what patterns to excite in the pattern-forming system un-

der the assumption that there is a direct correspondence between one of the

pattern-forming system variables (generally the activator) and the actuators’

positions. However, we then need to check whether, in fact, the actuators

are stiff for the loading conditions and voltages applied. In the case where the

actuators are assumed to snap between their two limits of motion, the pattern-

forming-system dynamics might actually drive comparators, which would in

turn drive the actuators. The actuator array surface might still vary smoothly,

however, if the actuators are supporting a deformable membrane, as is the case

for deformable mirrors, and as might be desirable for positioning microscopic

items.
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To clarify how an actuator array would be controlled by a pattern-forming

system, a derivation of the dynamical equations for torsional microflaps is

given. Then we determine the voltage levels required and discuss the condition

for the actuators to be stiff. Finally, we discuss the positioning of microscopic

items and micropositioning small (but not necessarily microscopic) items in

more detail.

7.2.1 Derivation of torsional flap dynamical equations

The dynamical equations for an electrostatically driven torsional mi-

croflap were derived by P.S. Krishnaprasad [51]. An alternative derivation

of these equations are presented here. (A different result is quoted in [52].)

The torsional flap configuration is an important one because electrostatically

actuated torsional joints are common in MEMS devices, and it is possible to

obtain piston motion using torsional joints [15]. By deriving the dynamical

equations for the torsional microflap, we can calculate the voltage levels re-

quired for a desired actuator displacement, and also derive the criterion for

our actuators to be stiff.

We start by determining the torque as a function of applied voltage for

a conducting flap connected to a pivot point located at a fixed distance above

a conducting sheet (figure 7.9). Although the flap is symmetrical about the

pivot point, there are really two separate conducting sheets below the flap,

one to the left and one to the right of the pivot point. Therefore, for purposes

of the analysis, we only consider the half of the flap to the right of the pivot

point along with the single conducting sheet below it.

The analysis strategy is to solve Laplace’s equation with the given bound-

ary conditions to determine the potential field between the plates. From the
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Figure 7.9: Torsional flap above a conducting sheet

solution to Laplace’s equation, the electric field distribution can be determined.

Next, the energy stored between the plates is determined by integrating the

square of the electric field over the volume between the plates. This energy is

then expressed solely in terms of the variable angle ϕ. Finally, the torque is

computed by differentiating the energy with respect to ϕ. Fringing effects are

neglected so that simple hand-calculations can be used.

Consider first the electrostatics problem of figure 7.10. There are two

plates which, if extended, make an angle of φ with each other in the xy-plane.

Using cylindrical coordinates, we let r1 and r2 denote the distance from the

origin to the edges of the two plates in the xy-plane. The plates are assumed

to be square with a z-dimension of length a. One plate is at a voltage V and

the other is grounded.

The voltage distribution between the plates can be found by solving

Laplace’s equation with the given voltage boundary conditions on the plates.

In the idealized case where the plates are infinite half-planes meeting at the z-

axis in cylindrical coordinates, the equipotential surfaces are half-planes which

when viewed in the xy-plane look like rays starting at the origin and heading

192



6

-
y

x

((((
((((

((((
((((

((((
(((

��
��

��
��

��
��

��
��

��
��
��
�

��
��

��
��

��
��

��
��

��
��
��
�

��
��

���
φ

r1

r2

V

B
BBN
E

equipotentials@@I
�
�
�	

Figure 7.10: Electrostatics problem for the torsional flap above a conducting
sheet

out radially between the two plates. Furthermore, by symmetry, equipotentials

that differ by the same voltage are separated by equal angles.

The equation E = −∇V from electrostatics dictates that for this poten-

tial distribution, the electric field lines must lie on circular arcs between the

two plates. From

V = −
∫

E · dl (7.1)

we conclude (since |E| is constant along each circular arc),

Eφ(r) = −
V

rφ
, (7.2)

and the other components of E are zero.

We can now calculate the stored electrical energy between the plates:

W =
ε

2

∫
V
|E|2dv

=
ε

2

V 2

φ2
a
∫ r2

r1

∫ φ

0

1

r2
rdrdφ̃
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=
ε

2

V 2

φ
a ln

r2

r1

. (7.3)

Now we return to the problem of figure 7.9. The goal is to express W in

terms of the the angle ϕ, which enters into φ, r1, and r2:

φ = ϕ,

r1 =
d0

sinϕ
, (7.4)

r2 =
d0

sinϕ
+
b

2
.

Therefore, W in terms of ϕ is given by

W =
εV 2a

2ϕ
ln

[
d0/ sinϕ+ b/2

d0/ sinϕ

]

=
εV 2a

2ϕ
ln

(
1 +

b

2d0
sinϕ

)

=
εV 2a

2ϕ
ln(1 + c0 sinϕ), (7.5)

where c0 = b/2d0. The torque is then

T = −
dW

dϕ

=
εV 2a

2ϕ2
ln(1 + c0 sinϕ)−

εV 2a

2ϕ

(
1

1 + c0 sinϕ

)
c0 cosϕ

=
εV 2a

2ϕ2

[
ln(1 + c0 sinϕ)−

c0ϕ cosϕ

1 + c0 sinϕ

]
. (7.6)

We can now use the following series expansions,

sinϕ = ϕ−
ϕ3

3!
+ · · · ,

cosϕ = 1−
ϕ2

2!
+ · · · ,

ln(1 + x) = x−
x2

2
+
x3

3
− · · · ,

1

1 + x
= 1− x+ x2 − x3 + · · · ,

(7.7)
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to obtain, for ϕ << 1 and x << 1,

ln(1 + c0 sinϕ) ≈ ln

[
1 + c0

(
ϕ−

ϕ3

6

)]

≈ c0

(
ϕ−

ϕ3

6

)
−

1

2
c2

0ϕ
2 +

1

3
c3

0ϕ
3

= c0ϕ−
c2

0

2
ϕ2 +

(
c3

0

3
−
c0

6

)
ϕ3, (7.8)

1

1 + c0 sinϕ
≈

1

1 + c0

(
ϕ− ϕ3

6

)
≈ 1− c0

(
ϕ−

ϕ3

6

)
+ c2

0ϕ
2 − c3

0ϕ
3

= 1− c0ϕ+ c2
0ϕ

2 +
(
c0

6
− c3

0

)
ϕ3, (7.9)

c0ϕ cosϕ ≈ c0ϕ

(
1−

ϕ2

2

)

= c0ϕ−
c0

2
ϕ3, (7.10)

c0ϕ cosϕ

1 + c0 sinϕ
≈

(
c0ϕ−

c0

2
ϕ3
) [

1− c0ϕ+ c2
0ϕ

2 +
(
c0

6
− c3

0

)
ϕ3
]

= c0ϕ−
c0

2
ϕ3 − c2

0ϕ
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Therefore,

T =
εV 2a

2ϕ2

[
ln(1 + c0 sinϕ)−
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1 + c0 sinϕ

]
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εV 2a

2ϕ2
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0

2
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(
c3
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)
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0ϕ
2 −

(
c3
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2

)
ϕ3

]

=
εV 2a

2ϕ2
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]

=
εV 2a

2

[
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0

2
+

(
c0

3
−

2c3
0

3

)
ϕ

]
. (7.12)

Defining

γ = c0ϕ, (7.13)

so that γ is approximately the ratio of actual deflection to maximum possible
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deflection for the flap, the torque expression can be rewritten as

T ≈
εV 2ab2

16d2
0

−
εV 2ab2

12d2
0

(
1−

2d2
0

b2

)
γ. (7.14)

We will refer to γ as the “relative deflection.” (In fact, the maximum possible

deflection is typically less than 10 degrees for torsional microflaps, so we are

justified in approximating the maximum angular deflection by 1/c0.) Letting

c1 = εab2

16d2
0
, and assuming that d0 << b, we can express the torque (approxi-

mately) as

T = c1V
2
(

1−
4

3
γ
)
. (7.15)

Modeling the mechanical part of the system as a linear torsional spring,

we have

Iϕ̈+
2K

l
ϕ = −T, (7.16)

where I is the moment of inertia of the flap, l is the length of the torsion bar

on which the flap is suspended, and K is the torsional rigidity of the torsion

bar on which the flap is suspended [51, 52]. We can write the linear torsional

spring equation in terms of γ as

γ̈ + ω2
0γ = −

c0

I
T, (7.17)

where ω0 =
√

2K
lI

.

Suppose now we actuate both sides of the flap with different voltages,

as shown in figure 7.11. If we now apply a voltage V1 to the right electrode,

apply a voltage V2 to the left electrode, and assume an external torque Text,

we obtain

T1 = c1V
2

1 − c1V
2

1

4

3
γ,

T2 = −c1V
2

2 − c1V
2

2

4

3
γ,

T = T1 + T2 − Text = c1(V 2
1 − V

2
2 )− c1(V 2

1 + V 2
2 )

4

3
γ − Text. (7.18)
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Figure 7.11: Torsional flap above two electrodes

The dynamical equation for the flap is then

γ̈ +
(
ω2

0 −
4

3

c0c1

I
(V 2

1 + V 2
2 )
)
γ =

c0c1

I
(V 2

2 − V
2

1 ) +
c0

I
Text. (7.19)

The primary dissipative mechanism for small torsional flaps in air is aeordy-

namic drag, which contributes a term c3|γ̇|γ̇ to the dynamics, yielding [51]

γ̈ + c3|γ̇|γ̇ +
(
ω2

0 −
4

3

c0c1

I
(V 2

1 + V 2
2 )
)
γ =

c0c1

I
(V 2

2 − V
2

1 ) +
c0

I
Text. (7.20)

Suppose we consider the voltages V1 and V2 as having a common-mode

component V and a differential component δV << V ; i.e.,

V1 = V −
1

2
δV, V2 = V +

1

2
δV. (7.21)

Then neglecting higher-order terms in δV , the dynamical equation becomes

γ̈ + c3|γ̇|γ̇ +

(
ω2

0 −
8V 2c0c1

3I

)
γ =

V c0c1

I
δV +

c0

I
Text, (7.22)

where we think of V as constant and δV as a control input. We can view the

dynamical equation (7.22) for the torsional microflap as being like a linear,

second-order system with a control input. In fact, if a mechanical damping

mechanism were added which dominated the aerodynamic drag dissipation (or
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if the control δV were used to perform active damping), the system could be

well-approximated by a linear second-order system.

We see from equation (7.22) that increasing the common-mode voltage

V reduces the resonant frequency of the flap. We can compute the reduction

in the resonant frequency as follows. The moment of inertia of the torsional

flap is given by

I =
1

12
ρadb3, (7.23)

where ρ = 2.3×103kg/m3 is the density of silicon and d is the thickness of the

flap. Therefore,

8

3
V 2 c0c1

I
=

8

3
V 2 b

2d0

εab2

16d2
0

12

ρadb3
=

V 2ε

ρd3
0d
, (7.24)

where ε = ε0 = 8.85× 10−12 F/m in air. Defining

fV =
1

2π

√
V 2ε

ρd3
0d

=
1

2π
V

√
ε

ρd3
0d
, (7.25)

we find that for typical values of d0 and d, and typical mechanical resonant

frequencies for MEMS torsional microflaps, it is possible to have fV comparable

to f0 = ω0/2π for voltages of about 100V. For example, taking d0 = 5µm,

d = .5µm, and V = 100V, we find fV = 125kHz ≈ f0 for a typical micromirror

element [13].

Consider the case of V small enough that fV << f0. Then letting ωe =√
ω2

0 − ω
2
V , we have

γ̈ + c3|γ̇|γ̇ + ω2
eγ =

3

8

V ε

ρd3
0d
δV +

c0

I
Text (7.26)

Suppose d0 and d are as before, but now V = 10V and ωe = 100kHz. We then

obtain the equilibrium equation

γ = (.023)δV +
c0

Iω2
e

Text, (7.27)
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which shows that δV << V leads to tiny relative deflections. So there is a

tradeoff between maintaining a high natural frequency and obtaining reason-

able relative deflections. So we see that even without considering external

torques, the common-mode voltages we require for reasonable deflections are

on the order of 100V, and the differential voltages are on the order of volts

when the common-mode voltage is 100V. In semiconductor processing, it is

possible to achieve the 100V common-mode and few-volt differential signals,

but care must be taken to ensure the 100V signal does not cause dielectric

breakdown. (If the dimensions of the actuators and the external torques are

small enough, low input voltages can provide sufficient displacement; for ex-

ample, the Texas Instruments micromirror chip runs from a single 5V power

supply [22, 23].)

When fV > f0, the coefficient ω2
e is negative. In this case, when Text = 0,

the flap tends to snap to one extreme of its range of motion, or the other.

Equation (7.22) does not provide a complete description of the dynamics in

this regime, but since this would be a digital mode of operation, a complete

description of the dynamics might not be necessary anyway, with parameters

like transition time being more of interest.

The condition that the actuators be stiff can be expressed as

Text << V c1(max |δV |), (7.28)

so that the external applied torque on the microflap only has a small effect

on the equilibrium angle. We see that the larger the voltages used, the stiffer

the actuators, as would be expected. Suppose there is a .23g mass on a 1cm2

actuator array (corresponding to a 1mm-thick piece of silicon), which is being

supported equally by 10 out of 100 actuators in the 1cm2 array. The torque
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on each actuator is

Text =
1

10
mg

b

2
=

1

10
(.00023kg)(9.8m/s2)(.0005m) = 1.1× 10−7Nm, (7.29)

and

c1 =
εab2

16d2
0

=
(8.85× 10−12F/m)(.001m)(.001m)2

(16)(5× 10−6m)2
= 2.2× 10−11F. (7.30)

Even with V = 100V, we see that the actuators are far from stiff in this

example.

To summarize, we have shown that it is indeed possible to achieve reason-

able relative deflections with reasonable signal voltages (of a few volts) while

keeping the natural frequency of the system positive, as long as there is a suf-

ficiently high DC voltage available. The high voltage supply would not have

to supply much power because there is essentially no DC current drawn by

the high-voltage supply, only displacement current. However, the mechanical

loading on the array has to be quite small for the actuators to be stiff (as it

would be for micromirror arrays).

7.2.2 Manipulation of micro-scale items

For manipulating micro-scale items, consider a two-dimensional array of

piston-type actuators underneath a flexible membrane [13]. Suppose that the

actuators are controlled by a spatial discretization of the basic cubic nonlin-

earity model with β << 1 and α > 1, with the control parameter in the regime

where spike equilibria are stable. There are two types of solutions that could be

used for manipulating items: ordinary spikes (figure 7.4 turned upside-down),

and circular walls (as in figure 7.6). The advantage of using circular walls is

that “containers” of different sizes could be generated in the same system. The

challenges of using circular walls is that they require a more compex method
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of excitation than is required for ordinary spikes, because if the walls bend too

sharply, they become unstable and decay into spikes.

To give a more concrete picture of how a micro-manipulation or sorting

system might work, suppose we have the ability to sense what objects are on

the array, and where. We might obtain this information from pressure sensors

in the array itself, or we might have an optical system above the array. For the

sorting application, we are interested in separating out one type of object from

others on the array. Where we sense the objects we want to separate, we excite

spikes or walls (either electronically, or electro-optically by shining light down

from above), and the network is designed to advect solutions in a particular

direction (toward a bin at the edge of the array). As a wall surrounding an

object moved along, it could push other objects in its path out of the way,

something a spike probably could not do.

If it was desired to bring two items together, with more control effort,

two walled regions with different items could be brought in proximity. A large

wall surrounding both items could then be excited, and finally, the inner walls

around each item could be made unstable. Of course, this type of scheme

requires considerable additional control effort as compared with the simple

sorting scheme.

Even for manipulation of small items, the walls or spikes that can be

obtained using MEMS piston actuators are limited to a few microns or less in

height. Therefore, even small objects we are trying to manipulate probably

will be higher than the walls or the depth of the spikes. Therefore, surface and

friction properties need to be considered carefully to determine if the objects

we are attempting to manipulate can actually be manipulated this way. For

example, in the case of manipulating fluids, we are really modulating surface
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tension effects when we change the shape of a deformable membrane above the

actuator array (presumably the fluid naturally beads on the membrane, and it

is the beads that we are attempting to move with the walls or spikes). Allow-

ing snapping to the limits of actuation is beneficial for the micromanipulation

application because it increases the height of the walls or spikes by about a

factor of 2.5 over the height we can otherwise achieve with the same geome-

try [13]. One disadvantage of snapping to the limits of actuation is stiction,

particularly if the actuator spends too long snapped to one limit or the other.

Allowing the actuators to snap to their limits of actuation is not a problem for

the control scheme we are proposing: it simply means the actuator deflections

will have a different shape than the corresponding three-dimensional plot of

control voltages.

7.2.3 Micropositioning small (but not micro-scale) items

One approach to micropositioning small items using MEMS is to use an

array of asymmetrical torsional resonators that each apply a small horizontal

force in a fixed direction as they oscillate [18, 19]. Suppose we have (at least)

three interlaced arrays of resonators with their directions of motion distributed

evenly around the unit circle. We could then drive the actuators using electrical

oscillator circuits, and couple the electrical oscillators so that each of the arrays

would be separately governed by a complex activator-inhibitor equation. By

controlling the patterns of rolls in the three networks, we could microposition

an object atop the actuators.

Although an ideal pattern of rolls for the complex activator-inhibitor

equation would work for conveying an object in the direction associated with

that array, in fact the ideal pattern is not even required for this application.

All we really want for motion in a single direction is that approximately equal
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numbers of actutators be supporting the object at each instant of time, which

is expected to be the case when C = 0 regardless of whether the roll pattern

is ideal or not. Whether the helical solutions are left- or right-handed also

makes no difference in this application, because the direction of rotation of

each actuator is the same regardless of what the phase differences are between

adjacent actuators.

So all we really need to control for the micropositioning application is

where in each array (with each array corresponding to a different direction of

motion) we excite the pattern solution. The alternative to exciting the pattern

solution should be turning the oscillators off, i.e., fixing the corresponding

actuator positions (either at the middle or bottom of their range of motion).

Thus, the bifurcation parameter we want to use is not C, the injected external

frequency, but is instead the coefficient of the linear instability term in the θ

equation (as discussed below in the context of phased-array antennas).

So to implement our pattern-forming-system control scheme, we would

lay out (at least) three co-located arrays of mechanical actuators, along with

one electrical oscillator and one resonant electrical circuit for each actuator,

couple the oscillators and resonators separately for each of the three arrays to

implement three complex activator-inhibitor equations, and use the coefficient

of the linear instability term in each complex activator-inhibitor equation as

a spatially-variable control parameter that can be controlled by a high-level

controller. Then to move an item in a certain direction, the high-level controller

merely has to raise the control parameter for the array corresponding to the

desired direction of motion in the vicinity of the object to be moved. If only

one object is to be moved at a time, the control parameters can be common

to each entire array.
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7.3 Phased-array antenna applications

One method for implementing a phased-array antenna is to use an electro-

optic system in which the optical part, using a micromirror array in which a

certain pattern solution is used to create a pattern of optical phases, drives a

photodetector array, which then controls the phase shifts in an array of electri-

cal oscillator circuits [16]. The radiation pattern of the phased-array antenna

is then controlled by controlling the pattern solution in the micromirror array.

However, we will consider a different type of phased-array antenna imple-

mentation here. As was shown in chapter 3, the complex activator-inhibitor

equation can model a network of coupled oscillators (and coupled resonant

circuits) if certain assumptions are met. It was also shown in chapter 6 that

for C = 0, there is an ideal helical pattern equilibrium for the one-dimensional

complex activator-inhibitor equation when α > 1 and β < 1. This ideal helical

pattern, in the coupled oscillator context, represents a constant phase shift

between each pair of neighboring oscillators. The wave number of the helical

pattern, which corresponds to the amount of phase shift between two adjacent

oscillators, can be controlled by varying L, l, or both. Therefore, a potential

application for the complex activator-inhibitor equation is phased-array an-

tennas. A one-dimensional system would correspond to a linear array, and a

two-dimensional system could be used as an endfire array [38, 39, 40].

7.3.1 Linear array

A linear array consists of a number of antennas equally spaced along a

line, with one oscillator corresponding to each antenna. If the phased array

is for transmitting, the oscillators drive the antennas, and if the array is for

receiving, each (quadrature) oscillator output is mixed with the corresponding
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antenna signal. The frequency of the oscillators determines the spacing of the

antennas: if the antennas are a half-wavelength apart, then when adjacent

oscillators are exactly out of phase, constructive interference occurs along the

axis of the array, and when adjacent oscillators are in phase, destructive in-

terference occurs along the axis of the array (and conversely for the normal

direction to the axis of the array). The direction of constructive interference

is also called the mainlobe direction.

For the coupled oscillator array we are considering based on the com-

plex activator-inhibitor equation, however, we need the phase shift between

oscillators to be considerably less than 180 degrees. Furthermore, we want to

consider the case of a very large number of closely spaced oscillators, since

then we can best approximate the purely resistive coupling needed between

adjacent oscillators. Solid-state microwave oscillators, which have relatively

low power output per oscillator but which can be fabricated in large numbers

using semiconductor processing, are thus the main candidate for phased-array

antennas based on the complex activator-inhibitor equation.

Suppose the parameter L, which corresponds to the strength of the cou-

pling between the resonant circuits, can be varied between a very large value

Lmax >> l and a value Lmin > l. Suppose that the spacing between the os-

cillators is such that out-of-phase oscillators are a half-wavelength apart when

L = Lmin and φmin =
√

1− l/Lmin/
√
lLmin. Then when L = Lmax, there

is constructive interference (almost) perpendicular to the array and destructive

interference along the axis of the array, and when L = Lmin, there is destruc-

tive interference perpendicular to the array and constructive interference along

the axis of the array.

The parameter L corresponds to the coupling between the resonant cir-
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cuits. When L = Lmax, the coupling between adjacent resonant circuits is

large, and when L = Lmin, it is small (perhaps limited by stray coupling).

So one parameter, common to all the resonant circuits, determines the phase

shift between neighboring oscillators.

There is still the issue of how to excite the appropriate left-handed helical

solution or right-handed helical solution. If we insist that the helical solution

always be, say, left-handed, then we are restricting the useful angular range

of the phased-array antenna to 90 degrees (as opposed to 180 degrees). But

let us assume 90 degrees of angular range is acceptible. If we can force the

system into the left-handed helical equlibrium, then as long as we vary L slowly

enough, we expect that the system will remain in the left-handed helical state.

So all we need to do is find a way to power up the oscillator array so that the

left-handed helical solution is selected.

We can obtain the ideal helical solution by powering up the oscillators

gradually from one side of the array to the other. This involves a slight mod-

ification to our usual complex activator-inhibitor equation: the addition of a

control parameter multiplying the linear instability term in the activator equa-

tion,

τθ∂tθ = l2∆θ − |θ|2θ + uθ + η,

τη∂tη = L2∆η − η − θ + C,
(7.31)

where u is a real-valued control input varying between zero and one (or between

a negative constant and one).

So we can bring the system up to an ideal helical solution. However,

symmetry-breaking chooses between the left-handed and right-handed states.

Two alternative ways to achieve an imperfect bifurcation (i.e., manually select

206



the left-handed helix) are to actually inject oscillating signals (e.g., using C)

slightly out of phase into the first couple of oscillators powered up, or else

have a slight asymmetry in the coupling between the first two oscillators. The

conclusion is that with some engineering work, it should be possible to use

the complex activator-inhibitor equation to help control a linear phased-array

antenna. However, the need for a network of resonant circuits and coupling be-

tween the oscillators and resonant circuits would involve additional complexity

as compared with other approaches [38, 39].

7.3.2 Endfire array

The endfire array operates on a slightly different principle than the lin-

ear array. The endfire array is a two-dimensional array, and we are inter-

ested in constructive and destructive interference in the plane containing the

array. (Usually two-dimensional phased-array antennas are used for three-

dimensional patterns outside the plane of the array, but the endfire configura-

tion can also be used.) To have a useful endfire array, we can fix the parameters

l and L, and vary the direction of constructive interference by controlling the

pattern in the network.

The pattern we desire is an ideal pattern of parallel rolls, where along the

direction perpendicular to the rolls we have ideal one-dimensional helical solu-

tions. The spacing of the antennas is chosen such that oscillators 180 degrees

out of phase are a half-wavelength apart, and therefore interfere constructively.

For the endfire array configuration, there is no need to worry about whether

the pattern is left-handed or right-handed. However, we still need to excite

an ideal pattern of parallel rolls, and then be able to reorient it as required to

change the mainlobe direction. The endfire antenna array example is partic-

ularly illustrative of the subtleties and difficulties one encounters in working
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Figure 7.12: Ideal roll pattern for the endfire phased-array antenna with long-
range coupling

with pattern-forming systems for control of large actuator arrays.

Suppose we first ask what the simplest technique would be for exciting

the ideal roll pattern in a rectangular network. One approach would be to first

power up a row of oscillators in the middle of the array, just as was done for

the linear array, and then power up the rest of the oscillators from the middle

row outward. This approach encounters the difficulty that the rolls tend to

become disordered as they form outward from the center of the array. A simple

solution to this problem is to add a small amount of long-range coupling to

help stabilize the ideal pattern. In fact, it is likely if the antenna array is a

transmit array, that there will, in fact, be some long-range coupling between

oscillators through the antennas. The long-range coupling is indeed observed

to stabilize the ideal roll pattern. The resulting roll pattern is shown in figure

7.12, and the corresponding (far-field) antenna pattern is shown in figure 7.13.

Once we have the initial ideal pattern of rolls, we would like to be able
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Figure 7.13: Antenna pattern for the ideal roll pattern of figure 7.12

to reorient the rolls in order to point the mainlobe in different directions. One

way would be to use radially-dependent advective terms to rotate the entire

pattern about its center at a constant angular velocity. However, physically,

this would require complicated, asymmetric coupling between oscillators, and

is therefore probably not realistic. So we might instead try to reorient the

roll pattern using the boundary of the array. However, here we encounter

an intrinsic limitation of the pattern approach: the pattern already present

has a strong tendency to persist even if we perturb its edges. We cannot

realistically expect to be able to move toward the bifurcation point and there

try to reorient the pattern, because we cannot expect to have a sufficiently

homogeneous system.

When we initially excited the ideal pattern of rolls, we were actually

using the pattern-forming properties of the system very close to threshold, as

we brought the system through threshold gradually across the network. If we

could determine a simple way of powering up the oscillators in the right order
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to achieve an arbitrary roll orientation, we could then achieve an arbitrary

mainlobe direction by creating a new roll pattern instead of trying to reorient

an existing one. Furthermore, since we want the system to be symmetric (so

that no particular mainlobe direction is perferred, we will take the oscillator

array to be circular instead of square.

One possible approach for trying to excite a roll pattern is to power up

the array starting at a particular point on the circumference: if all went well,

the resulting rolls would be approximately perpendicular to the diameter of the

circular array intersecting that point. One way to achieve the desired pattern

of turning on the oscillators is to use a second, bistable, two-dimensional, real

activator-inhibitor network to control the power to each oscillator. A wave can

then be excited in the real network that propagates radially outward from its

source and turns on each oscillator as it passes.

With this type of system, long-range coupling can actually be detrimental

to achieving the desired pattern. We want the rolls to be roughly parallel as

they form, but the long-range coupling tries to force the rolls to be straight

(which may break up the roll pattern into several subpatterns of rolls oriented

in different directions). An example of a pattern excited using the approach of

a second bistable network to turn on the oscillators is illustrated in figure 7.14.

The partially-formed pattern as the wave is sweeping through the bistable

system is shown in figure 7.15.

The bistable network and the coupled oscillator network (modeled by

the complex activator-inhibitor equation), viewed independently, both pos-

sess Lyapunov functions. The bistable network drives the activator-inhibitor

equation, but there is no feedback in the other direction. Furthermore, an

asymptotically stable system driving another asymptotically stable system is
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Figure 7.14: Roll pattern in a circular network with the oscillators turned on
using a bistable activator-inhibitor network
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Figure 7.15: The roll pattern of figure 7.14 in the process of being formed as
the wave in the bistable system sweeps across
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asymptotically stable (provided the second system does not have a finite es-

cape time due to the driving from the first system, which can be verified in

this case) [53].

The roll pattern in the circular array is not as regular as that of the

square array. Therefore the mainlobe of the antenna pattern is much wider for

the circular array, but the point of this example was to illustrate some of the

issues involved in actually using pattern-forming systems in applications. The

key point is that it is important to excite the desired pattern as the pattern

is being formed, because once formed, it will tend to resist change. Also, the

approach of using an additional bistable network to bring the first system into

the pattern-forming regime allows arbitrary orientations of a basic pattern to

be excited in a rotationally symmetric two-dimensional system with access

only to the edges (and to signals shared by the entire array).

7.4 Real-time image processing application

Consider the problem of detection of a particular type of item using im-

age processing. Some of the most challenging instances of this problem occur

in military applications, such as minesweeping and surveillance. The standard

approach is to take lots of pictures, digitize the data, perform digital noise re-

duction and spatial filtering, and then try to correlate features in the data with

matched filters developed for the target of interest. There is a receiver oper-

ating characteristic (ROC) for the detection problem, and detection threshold

is set so that an acceptable detection probability and false alarm rate tradeoff

is achieved [54].

Often, particularly in military applications, the targets are intentionally

camouflauged to foil detection. However, camouflauge that works well in the
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visible band (like green paint or foliage netting), is still succeptible to detec-

tion in the infrared band. Furthermore, it turns out that various features of

objects can be best detected by fusing data from the near infrared, far infrared,

and intermediate infrared [55]. (Sensory data fusion also plays an important

role in biological systems. For example, in cats it has been found that the

response to sound and light stimuli coming from the same peripheral point is

much stronger than the response to sound stimulus or visual stimulus alone.

This fusion of peripheral audio and visual information occurs reflexively; i.e.,

without conscious mental effort by the cat [56].) To facilitate data fusion for

different IR bands, IR focal plane arrays have been developed with co-located

sensors for near, intermediate, and far infrared [55]. By having a single detec-

tor (or three detectors stacked vertically) for all three IR bands, the problem of

image registration (which arises when three different arrays are used to image

the same scene) is overcome.

However, computation bandwidth is still a major issue in processing ei-

ther simple images or fused images from three detectors. (For IR arrays, the

processing is further complicated by the color-constancy issue: depending on

the ambient lighting and temperature, infrared images of the same object can

appear quite different. For purposes of this discussion, we will neglect the

color-constancy issue.) The amount of computation required is far too great

to hope to do in real-time.

However, biological systems use selective attention as a mechanism to

overcome this computation bandwidth problem, and selective attention has

been proposed for artificial visual recognition systems as well [57]. The idea

behind selective attention is to have a large peripheral vision imager that can

select potentially interesting features of the scene quickly and in parallel, and
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then have a smaller, more complicated imager that can focus on the interesting

features of the scene and assess in real-time whether the object one is trying

to detect is in fact present. The peripheral imager only needs to determine

where targets might be present, so it can use a much cruder matched filtering

technique than would be used for analyzing a photograph. The more compli-

cated matched filtering would be done by the much smaller imager that only

focuses in on areas of the scene that are potentially of interest, and because

this imager is small, the matched filtering can be done rapidly.

As we will outline, layered networks of pattern-forming systems could

potentially be used to control such a selective-attention imaging scheme. Con-

sider the following simplified version of the problem: we have a large square

panorama in which we want to look for a particular type of target, amid a

variety of clutter. Suppose we have a square imaging array with another small

square array at the center capable of determining (within acceptable error

criteria) whether it is looking at a target or not. We cannot scan the entire

scene with the small array due to time constraints. However, the large array

is capable of responding to features that look target-like, but with a very high

probability of false detection. The approach is to scan the scene with the large

array, and based on detections by the large array, point the small array toward

features in the scene containing possible targets. The parts of the problem

addressed by pattern-forming systems are related to recording where the large

array has detected a feature, and positioning the small array to point in turn

toward the detected features.

Suppose that under the large imaging array there is a cubic nonlinearity

dynamical system implemented. When the feature detection algorithm (possi-

bly a simple analog function of neighboring pixels) determines that a target-like
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feature is present, the control parameter is locally raised above the bifurcation

threshold for long enough to excite a spike solution in the cubic nonlinearity

system. (As discussed earlier, the feature detection algorithm could drive the

control parameter through ac-coupling, which is advantageous from a circuits

point of view.) The feature detectors thoughout the array work in parallel, so

that various spikes are excited in the cubic nonlinearity system.

Next, once the spikes have had a chance to form, the information about

where the spikes are needs to be used to point the small array. For this purpose

we use a second cubic nonlinearity network, this one with circular symmetry

and an additional advective term. The activator state of the first network (i.e.,

the one now containing spikes) is periodically (with low duty cycle) applied

as the control input to the second network, which otherwise has a spatially

uniform control parameter value that permits spike equilibria. When the first-

network activator is applied to the control input to the second network, spikes

are excited in the second network where there are spikes in the first network.

Spikes excited in the second network are then swept off by the advective term

toward the periphery of the second network. Each spike in the first network

thus produces a spike train at the same angle on the outer radius of the second

network, and the phase of the spike train is related to the radial coordinate of

the spike in the first network. This angle and radius information is then used

to direct the small array. Once the small array has checked out each feature

(i.e., each place a spike has been excited in the first network), the control

parameter for the first network can be moved into the regime where only the

spatially uniform equilibrium is stable, so that all spikes are removed. The

large array is then positioned on the next part of the scene, the first array

control parameter is moved back into the regime where spike solutions are

possible, and the process is repeated.
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The part of the selective attention problem that the layered network of

cubic nonlinearity models addresses is how to convert features detected by the

large array into information that can be used by the small array to decide where

to point. The first network takes detected features and produces a managable

collection of spikes. The second network takes a sparce, two-dimensional col-

lection of spikes and multiplexes out a collection of polar coordinate data for

directing the small imaging array. Both networks can consist of simple analog

circuits, either integrated with the focal plane arrays or in a three-dimensional

multilayered architecture.

The parts of the image processing task that the pattern-forming-system

networks are being asked to perform are low-level, simple tasks, but tasks

which it is helpful to perform in parallel. The networks simplify the interface

between the sensors and the control system, and the interface between the

control system and the actuators. The pattern-forming-system networks do

not have to perform high-level tasks themselves to be useful, if they help

simplify the job of the high-level controller. This appears to be a promising

niche for pattern-forming-system networks from a controls point of view. As

MEMS, microwave oscillator (and resonator), and imaging array technology

improves to where we are thinking more about real-time systems than devices,

we will have to develop some technique for performing the low-level functions

which are then in turn regulated by high-level control.
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Chapter 8

Conclusions and Directions for Future Research

On the theoretical side, for spatial discretizations of the models that

have Lyapunov functions, it would be nice to be able to prove convergence to

a particular equilibrium rather than having to settle for convergence to the

set of equilibria. Such a result has been claimed for gradient systems where

the energy function is analytic [58]. It does not appear, however, that the

spatially discretized systems for which we have found Lyapunov functions can

be written as gradient systems (with respect to a positive-definite metric).

On the engineering side, even though it may be technologically possi-

ble to incorporate electronics to implement a pattern-forming system with a

MEMS actuator array, the prototyping cost is much higher than the cost of

implementing the MEMS actuator array alone. It still remains to provide a

compelling argument that a particular actuator array controlled using a par-

ticular pattern-forming system would so outperform standard approaches that

it would be worth prototyping.

If there is one conclusion to be drawn from this investigation of apply-

ing pattern-forming systems to the control of actuator arrays, it is that the

problem is multidisciplinary. The control aspects of the problem, which have

been the primary focus here, are not enough to supply a useful system. Be-

yond the obvious mechanical engineering and solid state engineering required

to actually construct the systems, there also has to be detailed knowledge of

the application. If the application is to control boundary layer fluid flow, then
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the fluid system needs to be understood well enough to know what type of

actuation is required, which is currently an open question [17]. If the appli-

cation is to manipulate small quantities of fluid, then the physics of surface

tension, and the chemistry to be achieved, need to be understood and used in

deciding what type of actuation is needed [20]. If microwave coupled oscillators

are the application, then the electromagnetics and circuit design needs to be

understood, since both impact the pattern-forming system design. In optics,

there has been some investigation of what types of patterns might be useful

for micromirror arrays, but this work is still in its early stages, and requires

an understanding of adaptive optics [14].

Knowing what types of potentially useful solutions are readily achieved

with pattern-forming systems is a necessary first step toward developing a vi-

able concrete application, and that is essentially the contribution of this work.

The potentially useful solutions are not only the equilibria, but the relaxational

character of the dynamics as the equilibria are approached: for example, in a

bistable system, the only stable equilibria may be uninteresting spatially uni-

form equilibria, but the way the system transitions from one spatially uniform

equilibrium to the other is actually the behavior of interest. Above all, we de-

sire qualitative information about solutions that can be rigorously supported

mathematically, without the need to rely on simulation for more than simply

illustration. This is particularly important when we need to incorporate sensor

data and integrate arrays of actuators into larger control systems.
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Appendix A

Derivations

A.1 Derivation of the phase equation for K-systems

The starting point is the reaction-diffusion equation

∂tu = D∆u + f(u), (A.1)

where D is symmetric. We have introduced the change of coordinates

X = εx, T = ε2t, (A.2)

and the variables

∇φ(x, t) = k(x, t),

Φ(X, T, ε) = εφ(x, t)
(A.3)

so that

k̂(X, T ) = k(x, t) = ∇xφ(x, t) = ∇XΦ(X, T ). (A.4)

We will now drop the caret and consider k to be a function of X and T . The

first step is to expand the solution as

u(φ,X, T ) = u(0)(φ,X, T ) + εu(1)(φ,X, T ) + · · · , (A.5)

where u(0) is the ideal pattern, and each of the u(i) are periodic in φ with

period 2π.

To recast equation (A.1) in (X, T ) coordinates, we need to apply the

chain rule to obtain some derivative formulas:
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∇xf(φ,X, T ) = (∂φf)(∇xφ) + ε∇Xf

= k∂φf + ε∇Xf, (A.6)

∂tf(φ,X, T ) = (∂φf)(∂tφ) + ε2∂Tf

= ε2(∂φf)(∂Tφ) + ε2∂Tf

= ε(∂φf)(∂TΦ) + ε2∂T f, (A.7)

|∇xf |
2 = |k∂φf + ε∇Xf |

2

= k2(∂φf)2 + 2ε(∂φf)(k · ∇X)f +O(ε2), (A.8)

∇x · F(φ,X, T ) = (∂φF) · (∇xφ) + (∇X · F)(ε)

= k · (∂φF) + ε∇X · F, (A.9)

∆xf = ∇x · ∇xf

= ∇x · (k∂φf + ε∇Xf)

= (∇x · k)(∂φf) + k · ∇x(∂φf) + ε∇x · ∇Xf

= ε(∇X · k)(∂φf) + k · [k(∂2
φf) + ε∇X(∂φf)]

+ε[k · ∂φ(∇Xf) + ε∇X · ∇Xf ]

= k2(∂2
φf) + ε(∇X · k)(∂φf) + ε(k · ∇X)(∂φf)

+ε[k · ∇x(∂φf) + ε∆Xf ]

= k2(∂2
φf) + ε(∇X · k)(∂φf) + ε2(k · ∇X)(∂φf) + ε2∆Xf.

(A.10)

Using the intermediate calculations just derived, we obtain

∂tu(φ,X, T ) = ε(∂φu)(∂TΦ) + ε2(∂Tu),

∆xui = k2(∂2
φui) + ε(∇X · k)(∂φui) + ε2(k · ∇X)(∂φui) + ε2∆Xui,

∆xu = k2(∂2
φu) + ε(∇X · k)(∂φu) + ε2(∇X(∂φu))Tk + ε2∆Xu.

(A.11)
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(Recall that the gradient of a vector is defined as the transpose of the derivative

matrix.) Plugging into the reaction-diffusion equation, expanding the nonlin-

ear term in a Taylor series, and retaining only the terms of up to order ε, we

then obtain

ε∂φu
(0)∂TΦ = D

[
k2(∂2

φu
(0)) + ε(∇X · k)(∂φu

(0)) + ε2(∇X(∂φu
(0)))Tk

+εk2(∂2
φu

(1))
]

+ f(u(0)) + ε
∂f

∂u

∣∣∣∣
u=u(0)

u(1). (A.12)

The part of this equation which is of order zero in ε is simply the equation

satisfied by the ideal pattern

0 = Dk2(∂2
φu

(0)) + f(u(0)). (A.13)

Letting g = ∂f/∂u, the part which is of order ε gives rise to the equation

∂φu
(0)∂TΦ = D

[
(∇X · k)(∂φu

(0)) + 2(∇X(∂φu
(0)))Tk + k2(∂2

φu
(1))

]
+

g(u(0))u(1),[
Dk2∂2

φ + g(u(0))
]
u(1)

= −D
[
(∇X · k)(∂φu

(0)) + 2(∇X(∂φu
(0)))Tk

]
+ ∂φu

(0)∂TΦ,

(A.14)

and this equation has the form

L1u
(1) = N , (A.15)

where L1 and N are operators.

Due to the translation-invariance of the original reaction-diffusion equa-

tion, ∂φu
(0) is a zero-eigenvalue eigenvector of L1:

L1(∂φu
(0)) =

[
Dk2∂2

φ + g(u(0))
]
∂φu

(0)

= ∂φ
[
Dk2∂2

φu
(0) + f(u(0))

]
= 0. (A.16)
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Next, we observe that the operator L1 is self-adjoint:

< L1w,v > =
1

2π

∫ 2π

0
vTL1wdφ

=
1

2π

∫ 2π

0
vT
[
k2∂2

φ + g(u(0))
]
wdφ

=
1

2π

∫ 2π

0
wT

[
k2∂2

φ + g(u(0))
]
vdφ

= < w,L1v >, (A.17)

where we have used integration by parts. Then because L1 is self-adjoint and

has ∂φu
(0) as a zero-eigenvalue eigenvector, it follows from L1u

(1) = N that

< N , ∂φu
(0) > = < L1u

(1), ∂φu
(0) >

= < u(1),L1(∂φu
(0)) >

= 0. (A.18)

Calculating the various terms of < N , ∂φu(0) >, and using the notation

[fTg] =< f ,g >, (A.19)

gives

< (∂φu
(0))∂TΦ, ∂φu

(0) > = ∂TΦ
[
|∂φu

(0)|2
]
,

< D(∇X · k)∂φu
(0), ∂φu

(0) > = (∇X · k) < D∂φu
(0), ∂φu

(0) >

= (∇X · k)
[
(∂φu

(0))TD(∂φu
(0))

]
,

< 2D(∇X(∂φu
(0)))Tk, ∂φu

(0) > = 2 < k, (∇X(∂φu
(0)))DT (∂φu

(0)) > .

(A.20)

To simplify the last expression, we need the symmetry assumption on D. This

is because, in general, if we have u(x), a constant matrix A, and let D denote

the derivative operator,

Dx

(
1

2
uTAu

)
= Du

(
1

2
uTAu

)
Dxu
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=
(
Asymu

)T
Dxu,

∇x

(
1

2
uTAu

)
=

(
Dx

(
1

2
uTAu

))T
= (Dxu)T Asymu

= (∇xu) Asymu, (A.21)

where Asym = (A + AT )/2 is the symmetric part of A. Then we obtain

< 2D(∇X(∂φu
(0)))Tk, ∂φu

(0) > = 2 < k,∇X

(
1

2
(∂φu

(0))TD(∂φu
(0))
)
>

= k · ∇X

[
(∂φu

(0))TD(∂φu
(0))

]
. (A.22)

The orthogonality condition < N , ∂φu(0) >= 0 thus gives rise to the following

equation for Φ:

[
|∂φu

(0)|2
]
∂TΦ =

[
(∂φu

(0))TD(∂φu
(0))

]
(∇X ·k) + k ·∇X

[
(∂φu

(0))TD(∂φu
(0))

]
,

(A.23)

which can be put in the form

∂TΦ = f1(k)(∇X · k) + f2(k)(k · ∇X)k, (A.24)

since the ideal solution u(0) only depends on (X, T ) through the magnitude of

k(X, T ).

Finally, we need to convert back to the original coordinates (x, t):

∂tφ = f1(k)(∇x · k) + f2(k)(k · ∇x)k, (A.25)

where k is now thought of as a function of (x, t).

As we will now show, in two dimensions, this equation for Φ(X, T ) is

closely related to the diffusion equation,

∂TΦ = D1∂
2
XΦ +D2∂

2
Y Φ, (A.26)
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where X = (X, Y ), and D1 and D2 are diffusion coefficients.

To see how the diffusion equation plays a role, fix a point X in space, and

suppose that k takes on the value k(X, T ) at that point X at some time T .

Define the unit vector v̂‖ to be in the direction of k(X, T ), and let the v̂⊥ unit

vector be orthogonal to v̂‖. Then at any point in a small enough neighborhood

of (X, T ), we can do a coordinate transformation and write

k = ∇XΦ = (∂‖Φ)v̂‖ + (∂⊥Φ)v̂⊥, (A.27)

where ∂‖ is interpreted as the spatial partial derivative with respect to the

transformed coordinate corresponding to the v̂‖ direction, and ∂⊥ is interpreted

as the spatial partial derivative with respect to the transformed coordinate

corresponding to the v̂⊥ direction, and furthermore,

∂‖Φ >> ∂⊥Φ. (A.28)

Therefore, we can use the binomial formula to write

k = [(∂‖Φ)2 + (∂⊥Φ)2]1/2

= [(∂‖Φ)2]1/2 +
1

2
[(∂‖Φ)2]−1/2[(∂⊥Φ)2] + · · ·

= ∂‖Φ +
1

2

(∂⊥Φ)2

∂‖Φ
+ · · · . (A.29)

Moreover, the expression (k ·∇X) in the term (k ·∇X)k can be approximately

represented near (X, T ) as

(k · ∇X) ≈ k(v̂‖ · ∇X) = k∂‖, (A.30)

so that the linearization of the term (k · ∇X)k is k∂2
‖Φ.

Returning to equation (A.24), we can now plug in k = ∇XΦ and

(k · ∇X)k ≈ k∂2
‖Φ, and using the fact that

∇X · ∇XΦ = ∆XΦ = ∂2
‖Φ + ∂2

⊥Φ, (A.31)
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obtain the following approximate equation for Φ:

∂TΦ = (f1(k) + kf2(k))∂2
‖Φ + f1(k)∂2

⊥Φ

= D‖∂
2
‖Φ +D⊥∂

2
⊥Φ. (A.32)

The sense in which this is an approximate equation for Φ is that it is a lin-

earization of the full equation for Φ about a point (X, T ). The constants D‖

and D⊥ are the diffusion coefficients, and they describe the rate at which the

phase relaxes in the direction of k and in the direction perpendicular to k,

respectively.

The diffusion coefficients are functions of ε and k, the reduced control

parameter and the wave number. As long as both diffusion coefficients are

positive, the diffusion equation for Φ is stable. Where one diffusion coefficient

or the other becomes negative represents a stability boundary in the k − ε

plane.

A.2 Derivation of the complex activator-inhibitor dynam-

ics in polar coordinates

Starting with the dynamical system

τθ∂tθR = l2∂xxθR − (θ2
R + θ2

I)θR + θR + ηR,

τθ∂tθI = l2∂xxθI − (θ2
R + θ2

I )θI + θI + ηI ,

τη∂tηR = L2∂xxηR − ηR − θR + CR,

τη∂tηI = L2∂xxηI − ηI − θI + CI ,

(A.33)

and using the coordinate transformation

θR + iθI = rθ exp(iψθ),

ηR + iηI = rη exp(iψη), (A.34)

CR + iCI = rC exp(iψC),
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the ∂trθ equation is derived as follows. From r2
θ = θ2

R + θ2
I , we obtain

rθ∂trθ = θR∂tθR + θI∂tθI ,

(∂xrθ)
2 + rθ(∂xxrθ) = (∂xθR)2 + θR(∂xxθR) + (∂xθI)

2 + θI(∂xxθI).
(A.35)

From θR = rθ cosψθ and θI = rθ sinψθ, we obtain

∂xθR = (∂xrθ) cosψθ − rθ sinψθ(∂xψθ),

∂xθI = (∂xrθ) sinψθ + rθ cosψθ(∂xψθ),

(∂xθR)2 + (∂xθI)
2 = (∂xrθ)

2 + r2
θ(∂xψθ)

2. (A.36)

From ηR = rη cosψη and ηI = rη sinψη, we obtain

θRηR = rθrη cosψθ cosψη,

θIηI = rθrη sinψθ sinψη,

θRηR + θIηI = rθrη cos(ψθ − ψη). (A.37)

Next, multiplying the equation for ∂tθR through by θR, multiplying the equa-

tion for ∂tθI through by θI , and summing the results, we obtain

τθ [θR(∂tθR) + θI(∂tθI)]

= l2 [θR(∂xxθR) + θI(∂xxθI)]−
[
r2
θθ

2
R + r2

θθ
2
I

]
+
[
θ2
R + θ2

I

]
+ [θRηR + θIηI ] ,

τθrθ(∂trθ) = l2
[
(∂xrθ)

2 + rθ(∂xxrθ)− (∂xθR)2 − (∂xθI)
2
]
− r4

θ + r2
θ + θRηR

+θIηI

= l2
[
rθ(∂xxrθ)− r

2
θ(∂xψθ)

2
]
− r4

θ + r2
θ + rθrη cos(ψθ − ψη),

τθ∂trθ = l2
[
∂xxrθ − rθ(∂xψθ)

2
]
− r3

θ + rθ + rη cos(ψθ − ψη). (A.38)

Similarly, we obtain

τη∂trη = L2
[
∂xxrη − rη(∂xψη)

2
]
− rη − rθ cos(ψη − ψθ) + rC cos(ψη − ψC).

(A.39)
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To determine the equation for ∂tψθ, we first note that from θR = rθ cosψθ

and θI = rθ sinψθ we have

∂tθR = (∂trθ) cosψθ − rθ sinψθ(∂tψθ),

∂tθI = (∂trθ) sinψθ + rθ cosψθ(∂tψθ),

sinψθ(∂tθR) = (∂trθ) sinψθ cosψθ − rθ sin2 ψθ(∂tψθ),

cosψθ(∂tθI) = (∂trθ) sinψθ cosψθ + rθ cos2 ψθ(∂tψθ),

rθ∂tψθ = − sinψθ(∂tθR) + cosψθ(∂tθI). (A.40)

Plugging in the expressions for ∂tθR and ∂tθI then yields

τθrθ∂tψθ = − sinψθ
[
l2∂xxθR − r

2
θθR + θR + ηR

]
+ cosψθ

[
l2∂xxθI − r

2
θθI + θI + ηI

]
= − sinψθ

{
l2
[
(∂xxrθ) cosψθ − 2(∂xrθ) sinψθ(∂xψθ)− rθ cosψθ(∂xψθ)

2

−rθ sinψθ(∂xxψθ)
]
− r3

θ cosψθ + rθ cosψθ + rη cosψη

}
+ cosψθ

{
l2
[
(∂xxrθ) sinψθ + 2(∂xrθ) cosψθ(∂xψθ)− rθ sinψθ(∂xψθ)

2

+rθ cosψθ(∂xxψθ)
]
− r3

θ sinψθ + rθ sinψθ + rη sinψη

}
= l2 [2(∂xrθ)(∂xψθ) + rθ(∂xxψθ)] + rη sin(ψη − ψθ),

τθ∂tψθ = l2∂xxψθ +
2l2

rθ
(∂xrθ)(∂xψθ) +

rη
rθ

sin(ψη − ψθ). (A.41)

Similarly, we obtain

τη∂tψη = L2∂xxψη +
2L2

rη
(∂xrη)(∂xψη)−

rθ
rη

sin(ψθ − ψη) +
rC
rη

sin(ψC − ψη).

(A.42)

The dynamics in transformed coordinates are thus
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τθ∂trθ = l2
[
∂xxrθ − rθ(∂xψθ)

2
]
− r3

θ + rθ + rη cos(ψη − ψθ),

τη∂trη = L2
[
∂xxrη − rη(∂xψη)

2
]
− rη − rθ cos(ψη − ψθ) + rC cos(ψη − ψC),

τθ∂tψθ = l2∂xxψθ +
2l2

rθ
(∂xrθ)(∂xψθ) +

rη

rθ
sin(ψη − ψθ),

τη∂tψη = L2∂xxψη +
2L2

rη
(∂xrη)(∂xψη) +

rθ

rη
sin(ψη − ψθ)−

rC

rη
sin(ψη − ψC).

(A.43)
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Appendix B

Simulations

The simulations were performed for illustration purposes more than for

discerning the behavior of the systems being studied. Certainly one could

use a supercomputer and perform a thorough study, but the purpose of the

theoretical results is to obviate the need to do so. The purpose of this appendix

is to indicate what level of effort is required to simulate these systems in the

context of the applications outlined in chapter 7.

The spatially discretized versions of the cubic nonlinearity model and its

generalizations are quite amenable to numerical simulation when there is a

Lyapunov function (i.e., when α > 1 for the cubic nonlinearity model). The

approach is to formulate a system of 2N ODEs for an N-point spatial dis-

cretization, and then use a numerical integration technique starting from some

initial state to obtain an approximation to a system trajectory, which then

appears to approach an equilibrium solution for the 2N-dimensional system of

ODEs. The simulation results can be interpreted in two ways: either as ap-

proximating the time-evolution of the system, or simply as a numerical method

for finding an approximation to the equilibria.

The numerical integration technique used was the forward Euler method.

The forward Euler method is only stable if the step size is chosen sufficiently

small. Some simulations were performed using both the forward Euler method

and a fourth-order Runge-Kutta method, but no advantage was observed in

using the fourth-order Runge-Kutta method over the forward Euler method,

despite the Runge-Kutta method being a higher-order method. Although ana-
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log approaches for implementing the spatially discretized cubic nonlinearity

model and its variants were considered in chapters 3 and 7, an alternative

digital implementation approach would be to implement the forward Euler

numerical integration method in a parallel fashion. (In principle, the fourth-

order Runge-Kutta algorithm could also be implemented digitally in a parallel

fashion, but the complexity would be far greater.)

The time required to run a simulation (for the forward Euler method)

is determined by the step size, which is in turn limited by the ratios of time

constants and length scales (i.e., by α and β). (The fineness of the spatial

discretization also plays a role, but we take the spatial discretization spacing δ

equal to the activator diffusion length l. If δ < l, then the step size needs to be

reduced, and if δ > l, we risk having too coarse a discretization to accurately

approximate the continuous variable θ(x, t) of the PDE system.) Since we

need α > 1, we can take α ≈ 1, so that α does not limit our step size. So, in

fact, β is the parameter that determines the step size. If β << 1, we must use

a correspondingly small step size, but if β is only less than one, we can use a

larger step size. The cases for which β < 1 is of interest are

(1) the pattern regime for the basic cubic nonlinearity model,

(2) the complex activator-inhibitor equation, and

(3) the basic cubic nonlinearity model in the bistable regime when the be-

havior of interest is a wave that switches the system from one spatially

uniform equilibrium to another.

However, we must use β << 1 when we are interested in analyzing spike

solutions, because stable spike equilibria only exist for β << 1.
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Simulations on two-dimensional domains take correspondingly longer to

run than simulations in one dimension, but the actual code is similar. The main

modification required is one extra vector-matrix multiplication per update to

take into account diffusion in both spatial directions. For the two-dimensional

simulations, the matrices used were 100 by 100, and the simulation times were

on the order of several hours (using 1998 workstation technology). Of course,

if the computations were done in a parallel distributed fashion in an array of

actuators, there would be no limit on the size of the system, since the speed

of the numerical method would be independent of the system size.

When necessary, random initial conditions were used. Where symmetry-

breaking phenomena are possible, not using random initial conditions can lead

to misleading results. But when, for example, spikes are being excited by

locally raising the control parameter, a spatially uniform initial condition near

the spatially uniform equilibrium solution is acceptable.
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